找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High Performance Computing, Smart Devices and Networks; Select Proceedings o Ruchika Malhotra,L. Sumalatha,Naresh Babu Muppalan Conference

[復(fù)制鏈接]
樓主: Jefferson
51#
發(fā)表于 2025-3-30 09:19:47 | 只看該作者
Comparative Analysis of CNN Models with Vision Transformer on Lung Infection Classification,d analyzing lung infections by using InceptionV3, ResNet50, VGG16, InceptionResNet, and Vision Transformer. Each model is evaluated on the basis of mean accuracy error (MAE), binary accuracy, and loss. Among all the models, InceptionResNet has obtained a best accuracy of 93.33%. This study signifies
52#
發(fā)表于 2025-3-30 14:47:08 | 只看該作者
,Classification of Alzheimer’s Disease Using Stacking-Based Ensemble and Transfer Learning,different stages. The approach produces efficient and accurate results and is designed to encourage the implementation of deep learning in day-to-day medicine without the need for much human involvement. In the proposed method, we use transfer learning to employ three pre-trained deep learning model
53#
發(fā)表于 2025-3-30 17:05:59 | 只看該作者
Heart Device for Expectation of Coronary Illness Utilizing Internet of Things,e effect of pressure chemicals on hidden heart sicknesses. Numerous wearable innovations screen commonplace heart working pointers like circulatory strain, glucose level, blood oxygen immersion, and ECG. The proposed framework might gather the fundamental information while barring commotion unsettli
54#
發(fā)表于 2025-3-30 21:50:29 | 只看該作者
55#
發(fā)表于 2025-3-31 01:32:19 | 只看該作者
An Extensive Study of Frequent Mining Algorithms for Colossal Patterns,mall and mid-sized patterns aren’t mined, mining algorithms for enormous patterns run faster. In this work, an extensive study of colossal patterns, existing mining algorithms with its drawback is mentioned. The definitions of FPM, high utility mining and relation of colossal patterns with others ar
56#
發(fā)表于 2025-3-31 07:52:53 | 只看該作者
57#
發(fā)表于 2025-3-31 12:07:19 | 只看該作者
Ensemble Model Detection of COVID-19 from Chest X-Ray Images,d models’ performance is estimated in terms of accuracy, precision, recall, and f1-score parameters and achieved better results for detection purpose. Hence, the proposed model is a promising diagnostic tool for accurate screening of COVID-19 disease.
58#
發(fā)表于 2025-3-31 16:43:15 | 只看該作者
The Development of Advanced Deep Learning-Based EoR Signal Separation Techniques, results show that compared with the traditional methods including polynomial fitting and continuous wavelet transform, the EoR signals detected by the proposed deep learning model have better quantitative evaluation indexes of SNR and Pearson correlation coefficient. This property provides a new way to explore the research field of EoR.
59#
發(fā)表于 2025-3-31 20:34:20 | 只看該作者
60#
發(fā)表于 2025-4-1 00:39:10 | 只看該作者
Conference proceedings 2024he reader an up-to-date picture of the state-of-the-art connection between computational intelligence, machine learning, and IoT. The papers in this volume are peer-reviewed by experts in related areas. The book will serve as a valuable reference resource for academics and researchers across the globe..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桦甸市| 兴安盟| 新宾| 松溪县| 土默特右旗| 荆门市| 万宁市| 和硕县| 上栗县| 武威市| 德清县| 达日县| 获嘉县| 吉林市| 郯城县| 行唐县| 青冈县| 雅安市| 孟津县| 克东县| 吉水县| 县级市| 红桥区| 集安市| 睢宁县| 宁城县| 新巴尔虎左旗| 柏乡县| 咸宁市| 长泰县| 电白县| 柯坪县| 青川县| 华亭县| 兴宁市| 新源县| 股票| 新乐市| 辽宁省| 大渡口区| 沾化县|