找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High Performance Computing; 7th Latin American C Sergio Nesmachnow,Harold Castro,Andrei Tchernykh Conference proceedings 2021 The Editor(s)

[復(fù)制鏈接]
查看: 52932|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:51:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱High Performance Computing
副標題7th Latin American C
編輯Sergio Nesmachnow,Harold Castro,Andrei Tchernykh
視頻videohttp://file.papertrans.cn/427/426306/426306.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: High Performance Computing; 7th Latin American C Sergio Nesmachnow,Harold Castro,Andrei Tchernykh Conference proceedings 2021 The Editor(s)
描述This book constitutes revised selected papers of the 7th?Latin American High Performance Computing Conference,?CARLA 2020, held in Cuenca, Ecuador, in September 2020. Due to the COVID-19 pandemic the conference was held in a virtual mode.?.The 15 revised full papers presented were carefully reviewed and selected out of 36 submissions. The papers included in this book are organized according to the topics on ?High Performance Computing Applications;?High Performance Computing and Artificial Intelligence..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; cloud computing; computer hardware; computer networks; computer systems; computi
版次1
doihttps://doi.org/10.1007/978-3-030-68035-0
isbn_softcover978-3-030-68034-3
isbn_ebook978-3-030-68035-0Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱High Performance Computing影響因子(影響力)




書目名稱High Performance Computing影響因子(影響力)學(xué)科排名




書目名稱High Performance Computing網(wǎng)絡(luò)公開度




書目名稱High Performance Computing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱High Performance Computing被引頻次




書目名稱High Performance Computing被引頻次學(xué)科排名




書目名稱High Performance Computing年度引用




書目名稱High Performance Computing年度引用學(xué)科排名




書目名稱High Performance Computing讀者反饋




書目名稱High Performance Computing讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:37:36 | 只看該作者
Fostering Remote Visualization: Experiences in Two Different HPC Sitestion is of crucial importance to access infrastructure, data and computational resources and, to avoid data movement from where data is produced and to where data will be analyzed. Remote visualization enables geographically diverse collaboration and enhances user experience through graphical user i
板凳
發(fā)表于 2025-3-22 01:36:28 | 只看該作者
地板
發(fā)表于 2025-3-22 05:59:55 | 只看該作者
5#
發(fā)表于 2025-3-22 12:15:10 | 只看該作者
Accelerating Machine Learning Algorithms with TensorFlow Using Thread Mapping Policiesthms as an important concern. In this work, we explore mappings of threads in multi-core architectures and their impact on new ML algorithms running with Python and TensorFlow. Using smart thread mapping, we were able to reduce the execution time of both training and inference phases for up?to 46% a
6#
發(fā)表于 2025-3-22 14:46:04 | 只看該作者
Methodology for Design and Implementation an Efficient HPC Clusters that make up the infrastructure services. Each administrator based on their experience and knowledge assumes a series of considerations to design and implement a cluster that is considered efficient by installing base tools such as NTP, NFS, a task manager (that is, SLURM), LDAP, among others. In
7#
發(fā)表于 2025-3-22 20:49:29 | 只看該作者
Estimating the Execution Time of the Coupled Stage in Multiscale Numerical Simulationsr users. The goal of the present work is to estimate the execution time of simulation applications driven by multiscale numerical methods. In computational terms, these methods induce a two-stage simulation process. Fundamentally, the number of possibilities for configuring this two-stage process te
8#
發(fā)表于 2025-3-23 01:02:01 | 只看該作者
9#
發(fā)表于 2025-3-23 02:15:10 | 只看該作者
A Survey on Privacy-Preserving Machine Learning with Fully Homomorphic Encryption increasing volume of data into cloud storage, where cloud providers require high levels of trust, and data breaches are significant problems. Encrypting the data with conventional schemes is considered the best option to avoid security problems. However, a decryption process is necessary when the d
10#
發(fā)表于 2025-3-23 07:14:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陵川县| 耒阳市| 甘德县| 普兰县| 永州市| 左云县| 民县| 武鸣县| 海兴县| 陵水| 顺昌县| 涟水县| 绥中县| 普兰店市| 镇坪县| 江山市| 城固县| 蕲春县| 承德县| 清涧县| 庆安县| 罗江县| 舒城县| 黄龙县| 兴和县| 上蔡县| 盈江县| 木里| 正定县| 昌邑市| 贵德县| 准格尔旗| 大余县| 安宁市| 阿拉善左旗| 海淀区| 如东县| 彭泽县| 渝北区| 叙永县| 全州县|