找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: High Performance Computing; ISC High Performance Heike Jagode,Hartwig Anzt,Piotr Luszczek Conference proceedings 2021 Springer Nature Switz

[復(fù)制鏈接]
樓主: 爆裂
21#
發(fā)表于 2025-3-25 04:05:07 | 只看該作者
Novel DNNs for Stiff ODEs with Applications to Chemically Reacting Flowsments. For combustion, the number of reactions can be significant (over 100) and due to the very large CPU requirements of chemical reactions (over 99%) a large number of flow and combustion problems are presently beyond the capabilities of even the largest supercomputers..Motivated by this, novel D
22#
發(fā)表于 2025-3-25 10:04:25 | 只看該作者
23#
發(fā)表于 2025-3-25 13:34:32 | 只看該作者
24#
發(fā)表于 2025-3-25 18:53:35 | 只看該作者
25#
發(fā)表于 2025-3-26 00:00:45 | 只看該作者
Turbomachinery Blade Surrogate Modeling Using Deep Learninging. In this paper we present the feasibility of convolutional neural network (CNN) techniques for aerodynamic performance evaluation. CNN approach will enable designer to fully utilize the ability of computers and statistics to interrogate and interpolate the nonlinear relationship between shapes a
26#
發(fā)表于 2025-3-26 00:23:16 | 只看該作者
A Data-Driven Wall-Shear Stress Model for LES Using Gradient Boosted Decision?Treesmodel based on gradient boosted decision trees is presented. The model is trained to learn the boundary layer of a turbulent channel flow so that it can be used to make predictions for significantly different flows where the equilibrium assumptions are valid. The methodology of building the model is
27#
發(fā)表于 2025-3-26 05:38:00 | 只看該作者
Nonlinear Mode Decomposition and Reduced-Order Modeling for Three-Dimensional Cylinder Flow by Distrach used to decompose flow fields into physically important flow structures known as modes. In this study, convolutional neural network-based mode decomposition was applied to the three-dimensional flow field. However, because this process is costly in terms of calculation and memory usage for even
28#
發(fā)表于 2025-3-26 09:19:48 | 只看該作者
29#
發(fā)表于 2025-3-26 13:32:00 | 只看該作者
Toward a Workflow for Identifying Jobs with Similar I/O Behavior Utilizing Time Series Analysisg systems that capture the behavior of the executed jobs. While it is easy to utilize statistics to rank jobs based on the utilization of computing, storage, and network, it is tricky to find patterns in 100,000 jobs, i.e., is there a class of jobs that aren’t performing well. Similarly, when suppor
30#
發(fā)表于 2025-3-26 16:49:02 | 只看該作者
H3: An Application-Level, Low-Overhead Object Storespecially tailored for use in “converged” Cloud-HPC environments, where HPC applications expect from the underlying storage services to meet strict latency requirements—even for high-level object operations. By embedding the object store in the application, thus avoiding the REST layer, we show that
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海南省| 兴业县| 昆明市| 出国| 宿州市| 基隆市| 英山县| 焦作市| 景东| 金溪县| 九龙城区| 蓬安县| 大埔区| 金坛市| 陆良县| 金平| 驻马店市| 南涧| 南开区| 辉县市| 延安市| 新巴尔虎左旗| 利川市| 深水埗区| 内丘县| 齐齐哈尔市| 石狮市| 孟津县| 阳江市| 定边县| 永春县| 锡林郭勒盟| 卫辉市| 保定市| 临海市| 衡阳市| 越西县| 博湖县| 南陵县| 嘉兴市| 阿巴嘎旗|