找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Heat Kernel on Lie Groups and Maximally Symmetric Spaces; Ivan G. Avramidi Book 2023 The Editor(s) (if applicable) and The Author(s), unde

[復制鏈接]
查看: 50692|回復: 49
樓主
發(fā)表于 2025-3-21 16:36:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces
編輯Ivan G. Avramidi
視頻videohttp://file.papertrans.cn/425/424988/424988.mp4
概述Studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces.Introduces many original ideas, methods, and tools developed by the author.Provides a list of all kn
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: Heat Kernel on Lie Groups and Maximally Symmetric Spaces;  Ivan G. Avramidi Book 2023 The Editor(s) (if applicable) and The Author(s), unde
描述.This monograph studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces.It introduces many original ideas, methods, and tools developed by the author and provides a list of all known exact results in explicit form – and derives them – for the heat kernel on spheres and hyperbolic spaces. Part I considers the geometry of simple Lie groups and maximally symmetric spaces in detail, and Part II discusses the calculation of the heat kernel for scalar, spinor, and generic Laplacians on spheres and hyperbolic spaces in various dimensions.This text will be a valuable resource for researchers and graduate students working in various areas of mathematics – such as global analysis, spectral geometry, stochastic processes, and financial mathematics – as well in areas of mathematical and theoretical physics – including quantum field theory, quantum gravity, string theory, and statistical physics..
出版日期Book 2023
關鍵詞Heat Kernel; Heat Kernel Lie Groups; Heat Kernel Maximally Symmetric Spaces; Scalar Heat Kernel; Spinor
版次1
doihttps://doi.org/10.1007/978-3-031-27451-0
isbn_softcover978-3-031-27450-3
isbn_ebook978-3-031-27451-0Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces影響因子(影響力)




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces影響因子(影響力)學科排名




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces網(wǎng)絡公開度




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces網(wǎng)絡公開度學科排名




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces被引頻次




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces被引頻次學科排名




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces年度引用




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces年度引用學科排名




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces讀者反饋




書目名稱Heat Kernel on Lie Groups and Maximally Symmetric Spaces讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:15:01 | 只看該作者
Heat Kernel on Lie Groups and Maximally Symmetric Spaces978-3-031-27451-0Series ISSN 1660-8046 Series E-ISSN 1660-8054
板凳
發(fā)表于 2025-3-22 00:43:45 | 只看該作者
Ivan G. AvramidiStudies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces.Introduces many original ideas, methods, and tools developed by the author.Provides a list of all kn
地板
發(fā)表于 2025-3-22 05:15:06 | 只看該作者
Frontiers in Mathematicshttp://image.papertrans.cn/h/image/424988.jpg
5#
發(fā)表于 2025-3-22 12:13:13 | 只看該作者
Ivan AvramidiEines der wichtigsten Themen, das unter anderem in den Reaktionen auf Gesetzesentwürfe immer wieder auftaucht, ist das Bestellerprinzip. Dessen Einführung w?re das Panazee, um die Unzul?nglichkeiten in der Maklerbranche zu beheben.
6#
發(fā)表于 2025-3-22 13:43:46 | 只看該作者
Scalar Heat KernelIn this chapter we show that the calculation of the scalar heat kernel and the resolvent on .-dimensional spheres . and hyperbolic spaces . can be reduced to one and two dimensions. We explicitly compute the scalar heat kernel and the resolvent first in one and two dimensions and then for an arbitrary dimension.
7#
發(fā)表于 2025-3-22 19:01:57 | 只看該作者
Spinor Heat KernelIn this chapter we show that the spinor heat trace on the sphere . can be computed by purely algebraic methods. We also explicitly compute the spinor heat kernel and the resolvent on the spheres . and the hyperbolic spaces ..
8#
發(fā)表于 2025-3-22 23:13:47 | 只看該作者
9#
發(fā)表于 2025-3-23 01:32:04 | 只看該作者
10#
發(fā)表于 2025-3-23 07:11:32 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平顶山市| 防城港市| 米林县| 措勤县| 阿尔山市| 濮阳市| 蕉岭县| 洛浦县| 井陉县| 南溪县| 旌德县| 呼伦贝尔市| 甘德县| 阳谷县| 德格县| 九江市| 墨竹工卡县| 雷州市| 崇仁县| 正镶白旗| 新乡县| 咸宁市| 高密市| 汾西县| 长寿区| 井陉县| 涿州市| 南阳市| 岗巴县| 甘孜| 田阳县| 兴文县| 西和县| 嫩江县| 同德县| 府谷县| 铁岭县| 平阳县| 兴城市| 侯马市| 龙井市|