找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Heart Failure Mechanisms and Management; Basil S. Lewis (Director),Asher Kimchi (Assistant Conference proceedings 1991 Springer-Verlag Be

[復(fù)制鏈接]
樓主: 掩飾
51#
發(fā)表于 2025-3-30 08:52:18 | 只看該作者
I. H. Zuckereneralize to the almost-Bieberbach groups. Moreover, using affine representations, explicit cohomology computations can be carried out, or resulting in a classification of the almost-Bieberbach groups in low dimensions. The concept of a polynomial structure, an alternative for the affine structures that sometimes fail, is introduced.
52#
發(fā)表于 2025-3-30 15:26:11 | 只看該作者
R. Shabetaieneralize to the almost-Bieberbach groups. Moreover, using affine representations, explicit cohomology computations can be carried out, or resulting in a classification of the almost-Bieberbach groups in low dimensions. The concept of a polynomial structure, an alternative for the affine structures that sometimes fail, is introduced.
53#
發(fā)表于 2025-3-30 16:31:28 | 只看該作者
54#
發(fā)表于 2025-3-30 21:43:02 | 只看該作者
F. P. Chappuis,P. A. Dorsaz,W. Rutishausern be proved (approximation theorem) that the series thus obtained is summable (by some appropriate method) to the value . (.); this theory has as its starting point the .. Bogoliubov has used the opposite procedure, proving at first, directly, the approximation theorem and subsequently deducing the mean value theorem and the Fourier expansion.
55#
發(fā)表于 2025-3-31 04:06:23 | 只看該作者
56#
發(fā)表于 2025-3-31 07:43:25 | 只看該作者
E. H. Sonnenblick,T. H. LeJemtel,P. Anversaesulting in a classification of the almost-Bieberbach groups in low dimensions. The concept of a polynomial structure, an alternative for the affine structures that sometimes fail, is introduced.978-3-540-61899-7978-3-540-49564-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沅江市| 临清市| 临邑县| 青冈县| 林西县| 文登市| 阳高县| 阿勒泰市| 石楼县| 宣汉县| 乐清市| 龙井市| 凤山市| 尤溪县| 正安县| 海城市| 色达县| 泰顺县| 咸丰县| 太保市| 南汇区| 武冈市| 十堰市| 高雄市| 西丰县| 利津县| 大邑县| 新疆| 额尔古纳市| 临高县| 陵川县| 濉溪县| 枣阳市| 陆丰市| 保山市| 华阴市| 岗巴县| 勐海县| 射洪县| 思南县| 登封市|