找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Information Processing. Evaluation Track Papers; 9th China Conference Hua Xu,Qingcai Chen,Hui Zong Conference proceedings 2024 The E

[復(fù)制鏈接]
樓主: 拿著錫
31#
發(fā)表于 2025-3-26 21:20:06 | 只看該作者
32#
發(fā)表于 2025-3-27 05:10:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:24:19 | 只看該作者
Conference proceedings 2024angzhou, China, during October 27–29, 2023.?The 15 algorithms papers and 6 overview papers included in this book were carefully reviewed and selected from a total of 66 submissions to the conference. They were organized in topical sections as follows: CHIP-PromptCBLUE Medical Large Model Evaluation;
34#
發(fā)表于 2025-3-27 09:47:45 | 只看該作者
Overview of?the?PromptCBLUE Shared Task in?CHIP2023, and provide a good testbed for Chinese open-domain or medical-domain large language models (LLMs) in general medical natural language processing. Two different tracks are held: (a) prompt tuning track, investigating the multitask prompt tuning of LLMs, (b) probing the in-context learning capabilit
35#
發(fā)表于 2025-3-27 16:14:53 | 只看該作者
36#
發(fā)表于 2025-3-27 21:00:20 | 只看該作者
CMed-Baichuan: Task Explanation-Enhanced Prompt Method on?PromptCBLUE Benchmarkowledge-intensive nature of the medical field, previous studies proposed various fine-tuning methods and fine-tuned domain LLMs to align the general LLMs into specific domains. However, they ignored the difficulty of understanding the medical task requirements, that is LLMs are expected to give answ
37#
發(fā)表于 2025-3-27 23:51:28 | 只看該作者
Improving LLM-Based Health Information Extraction with In-Context Learningansformed into prompt based language generation tasks. On the other hand, LLM can also achieve superior results on brand new tasks without fine-tuning, solely with a few in-context examples. This paper describes our participation in the China Health Information Processing Conference (CHIP 2023). We
38#
發(fā)表于 2025-3-28 05:01:24 | 只看該作者
39#
發(fā)表于 2025-3-28 09:08:57 | 只看該作者
Similarity-Based Prompt Construction for Large Language Model in Medical Taskstential of using LLM to unify diverse NLP tasks into a text generative manner. In order to explore the potential of LLM for In-Context Learning in Chinese Medical field, the 9th China Health Information Processing Conference (CHIP 2023) has released a non-tuning LLM evaluation task called PromptCBLU
40#
發(fā)表于 2025-3-28 12:53:23 | 只看該作者
CMF-NERD: Chinese Medical Few-Shot Named Entity Recognition Dataset with?State-of-the-Art Evaluationical NER datasets available. The difficulty to share private data and varying specifications presented pose a challenge to this research. In this paper, We merged and cleaned multiple sources of Chinese medical NER dataset, then restructured these data into few-shot settings. CMF-NERD was constructe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
斗六市| 仲巴县| 象山县| 安陆市| 楚雄市| 东乌珠穆沁旗| 凉城县| 江达县| 赣州市| 合水县| 天全县| 苍溪县| 商南县| 西峡县| 基隆市| 资溪县| 承德市| 淮滨县| 贵州省| 章丘市| 石屏县| 巴林右旗| 资源县| 云安县| 舞钢市| 宣化县| 南靖县| 曲松县| 满洲里市| 永善县| 内江市| 沧州市| 马尔康县| 大渡口区| 兴和县| 德令哈市| 赣榆县| 双牌县| 中阳县| 丹棱县| 旌德县|