找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Transition; Building a Program f Albert C. Hergenroeder,Constance M. Wiemann Book 2018 Springer International Publishing AG, pa

[復(fù)制鏈接]
樓主: Systole
11#
發(fā)表于 2025-3-23 11:20:21 | 只看該作者
Laura G. Buckner M.Ed., L.P.C.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
12#
發(fā)表于 2025-3-23 13:52:22 | 只看該作者
Cecily L. Betz Ph.D., R.N.This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.
13#
發(fā)表于 2025-3-23 20:52:06 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:52 | 只看該作者
Beth Sufian J.D.,James Passamano J.D.,Amy Sopchak J.D.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
15#
發(fā)表于 2025-3-24 04:18:56 | 只看該作者
16#
發(fā)表于 2025-3-24 07:17:25 | 只看該作者
17#
發(fā)表于 2025-3-24 13:58:56 | 只看該作者
18#
發(fā)表于 2025-3-24 17:09:24 | 只看該作者
Roberta G. Williams M.D.,Ellen F. Iverson M.P.H.In this note we consider cases in which a curve in ?r which is scheme theoretically the intersection of quadrics necessarily has homogeneous ideal generated by quadrics. The first case in which this does not happen is for a general elliptic octic in ?.; we give a proof of this using the surjectivity of the period map for K3 surfaces.
19#
發(fā)表于 2025-3-24 22:56:08 | 只看該作者
20#
發(fā)表于 2025-3-25 00:34:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西城区| 琼海市| 东乡| 固镇县| 和林格尔县| 南开区| 涟水县| 榆林市| 疏附县| 毕节市| 楚雄市| 建阳市| 三原县| 奉新县| 宝鸡市| 永修县| 青龙| 张家口市| 台东市| 九江县| 岳池县| 宁安市| 屯昌县| 拉萨市| 绿春县| 固镇县| 安福县| 磐安县| 顺义区| 遂宁市| 同江市| 邳州市| 宜州市| 大化| 师宗县| 中超| 工布江达县| 沅陵县| 广安市| 广饶县| 土默特右旗|