找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Reform Simplified; What Professionals i Dave Parks Book 2012Latest edition David Parks 2012

[復制鏈接]
樓主: Addiction
11#
發(fā)表于 2025-3-23 10:38:04 | 只看該作者
12#
發(fā)表于 2025-3-23 16:07:35 | 只看該作者
13#
發(fā)表于 2025-3-23 20:54:38 | 只看該作者
14#
發(fā)表于 2025-3-23 23:41:41 | 只看該作者
Dave Parksdegree of the singular Todd class of Baum-Fulton-MacPherson and in a formula of Deligne concerning the dimension of the base space of the semiuniversal deformation. Some applications of this fact are given in particular to the non-smooth-ability of certain curves.
15#
發(fā)表于 2025-3-24 06:18:57 | 只看該作者
topologically trivial iff the Milnor numbers of the singularities are constant during the deformation. The Milnor number also occurs naturally in the degree of the singular Todd class of Baum-Fulton-MacPherson and in a formula of Deligne concerning the dimension of the base space of the semiuniversa
16#
發(fā)表于 2025-3-24 08:31:57 | 只看該作者
17#
發(fā)表于 2025-3-24 13:49:49 | 只看該作者
Dave Parkscal polar variety of codimension k of X, as defined by Lê D.T. and myself, and m. denotes the multiplicity at x..One can visualize P.(X) as follows : Pick an embedding X??. of a representative of (X, x) and take a general linear projection p : ?.→?.. The closure in X of the critical locus of the res
18#
發(fā)表于 2025-3-24 17:52:21 | 只看該作者
Dave Parkscal polar variety of codimension k of X, as defined by Lê D.T. and myself, and m. denotes the multiplicity at x..One can visualize P.(X) as follows : Pick an embedding X??. of a representative of (X, x) and take a general linear projection p : ?.→?.. The closure in X of the critical locus of the res
19#
發(fā)表于 2025-3-24 21:27:07 | 只看該作者
Dave Parkstopologically trivial iff the Milnor numbers of the singularities are constant during the deformation. The Milnor number also occurs naturally in the degree of the singular Todd class of Baum-Fulton-MacPherson and in a formula of Deligne concerning the dimension of the base space of the semiuniversa
20#
發(fā)表于 2025-3-25 03:12:04 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
谷城县| 梁河县| 韩城市| 凉城县| 枝江市| 扬州市| 灵台县| 泰顺县| 湾仔区| 威远县| 舞钢市| 甘孜| 揭东县| 鹰潭市| 龙岩市| 比如县| 临沧市| 淳安县| 德保县| 垣曲县| 上思县| 安化县| 崇义县| 龙里县| 囊谦县| 中江县| 利津县| 宁陕县| 井冈山市| 德令哈市| 龙南县| 乐业县| 南郑县| 丰顺县| 安溪县| 永兴县| 普宁市| 金阳县| 南丹县| 陕西省| 龙川县|