找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Health Care Computing; A Survival guide for Philip Burnard Book 1995 Philip Burnard 1995 Windows.databases.design.productivity.software

[復(fù)制鏈接]
樓主: 小費(fèi)
31#
發(fā)表于 2025-3-26 20:56:28 | 只看該作者
32#
發(fā)表于 2025-3-27 04:46:45 | 只看該作者
33#
發(fā)表于 2025-3-27 05:59:05 | 只看該作者
34#
發(fā)表于 2025-3-27 13:16:52 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
35#
發(fā)表于 2025-3-27 13:51:38 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
36#
發(fā)表于 2025-3-27 20:00:02 | 只看該作者
37#
發(fā)表于 2025-3-28 01:45:23 | 只看該作者
38#
發(fā)表于 2025-3-28 05:26:39 | 只看該作者
39#
發(fā)表于 2025-3-28 10:15:43 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
40#
發(fā)表于 2025-3-28 14:12:24 | 只看該作者
Philip Burnard we need a far more precise description of the first order degenerations (13 in all) than that given by Schubert and this is obtained by proving a number of key geometric relations that are satisfied by cuspidal cubics. Moreover, our procedure does not require using coincidence formulas to derive the basic degeneration relations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 23:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玛曲县| 当阳市| 唐山市| 博爱县| 郁南县| 平阴县| 长泰县| 新竹市| 含山县| 杂多县| 潢川县| 涞水县| 庆云县| 沙田区| 吉水县| 永靖县| 金山区| 贞丰县| 乌海市| 永康市| 花垣县| 高清| 拜泉县| 桂林市| 磐石市| 响水县| 饶平县| 古浪县| 河东区| 准格尔旗| 淮滨县| 兴宁市| 手机| 遵化市| 晋城| 河东区| 天祝| 水富县| 吉隆县| 津市市| 锦屏县|