找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group; Valery V. Volchkov,Vitaly V. Volchkov Book 2009

[復(fù)制鏈接]
查看: 53419|回復(fù): 53
樓主
發(fā)表于 2025-3-21 17:14:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group
編輯Valery V. Volchkov,Vitaly V. Volchkov
視頻videohttp://file.papertrans.cn/425/424275/424275.mp4
概述The approach employed in this book is the best suited for dealing with the subject in a systematic fashion..Most of the results are the best possible, giving answers to all questions that naturally ar
叢書(shū)名稱(chēng)Springer Monographs in Mathematics
圖書(shū)封面Titlebook: Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group;  Valery V. Volchkov,Vitaly V. Volchkov Book 2009
描述The theory of mean periodic functions is a subject which goes back to works of Littlewood, Delsarte, John and that has undergone a vigorous development in recent years. There has been much progress in a number of problems concerning local - pects of spectral analysis and spectral synthesis on homogeneous spaces. The study oftheseproblemsturnsouttobecloselyrelatedtoavarietyofquestionsinharmonic analysis, complex analysis, partial differential equations, integral geometry, appr- imation theory, and other branches of contemporary mathematics. The present book describes recent advances in this direction of research. Symmetric spaces and the Heisenberg group are an active ?eld of investigation at 2 the moment. The simplest examples of symmetric spaces, the classical 2-sphere S 2 and the hyperbolic plane H , play familiar roles in many areas in mathematics. The n Heisenberg groupH is a principal model for nilpotent groups, and results obtained n forH may suggest results that hold more generally for this important class of Lie groups. The purpose of this book is to develop harmonic analysis of mean periodic functions on the above spaces.
出版日期Book 2009
關(guān)鍵詞Convolution and transmutation operators; Eigenfunction expansions; Mean periodicity; Spectral analysis
版次1
doihttps://doi.org/10.1007/978-1-84882-533-8
isbn_softcover978-1-4471-2283-8
isbn_ebook978-1-84882-533-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag London 2009
The information of publication is updating

書(shū)目名稱(chēng)Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group影響因子(影響力)




書(shū)目名稱(chēng)Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group被引頻次




書(shū)目名稱(chēng)Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group被引頻次學(xué)科排名




書(shū)目名稱(chēng)Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group年度引用




書(shū)目名稱(chēng)Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group年度引用學(xué)科排名




書(shū)目名稱(chēng)Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group讀者反饋




書(shū)目名稱(chēng)Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:40:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:06:18 | 只看該作者
Realizations of Rank One Symmetric Spaces of?Compact Typeponding projective spaces. A detailed discussion of this imbedding is presented. Many formulas that are useful and important, but usually left to books, are given in the text. This is the source of very extensive information about compact symmetric spaces of rank one.
地板
發(fā)表于 2025-3-22 06:10:54 | 只看該作者
Realizations of the Irreducible Components of?the Quasi-Regular Representation of Groups Transitive s into irreducible submodules under the action of these groups is given. Applications of these results to invariant subspaces are considered. The treatment differs from the existing books and is accessible to a wider audience as the use of Lie theory is minimal.
5#
發(fā)表于 2025-3-22 09:07:46 | 只看該作者
6#
發(fā)表于 2025-3-22 14:53:01 | 只看該作者
Preliminariesonality property for entire functions, Cauchy-type estimates of holomorphic functions, the Titchmarsh theorem on supports of convolutions, the Paley–Wiener–Schwartz theorem, and the Ehrenpreis–H?rmander characterization of invertible distributions. These results will be used many times in the later
7#
發(fā)表于 2025-3-22 17:10:17 | 只看該作者
8#
發(fā)表于 2025-3-23 00:08:09 | 只看該作者
9#
發(fā)表于 2025-3-23 05:19:57 | 只看該作者
10#
發(fā)表于 2025-3-23 05:41:07 | 只看該作者
The Case of Symmetric Spaces ,=,/, of?Noncompact Typeredients. The first is the Fourier decomposition on ., the second is the Eisenstein–Harish-Chandra integrals and their generalizations, and the third is the Helgason Fourier transform. This material is presented at the beginning of the chapter. The theory of transmutation operators associated with t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高邮市| 收藏| 保德县| 宁乡县| 新巴尔虎左旗| 深圳市| 巍山| 宁强县| 深州市| 杭锦后旗| 镶黄旗| 珠海市| 台中县| 外汇| 巴南区| 沛县| 太保市| 井研县| 黎川县| 印江| 高州市| 兰溪市| 留坝县| 淮阳县| 彩票| 观塘区| 宜川县| 巴楚县| 海口市| 邹平县| 保德县| 新昌县| 沂南县| 波密县| 黄山市| 遂昌县| 湘阴县| 皋兰县| 闽侯县| 加查县| 邢台市|