找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis in Hypercomplex Systems; Yu. M. Berezansky,A. A. Kalyuzhnyi Book 1998 Springer Science+Business Media B.V. 1998 Fourier

[復制鏈接]
樓主: 板條箱
11#
發(fā)表于 2025-3-23 11:08:05 | 只看該作者
12#
發(fā)表于 2025-3-23 15:31:35 | 只看該作者
13#
發(fā)表于 2025-3-23 20:12:00 | 只看該作者
14#
發(fā)表于 2025-3-23 22:42:02 | 只看該作者
Introduction,rmonic analysis can be generalized by replacing exponential functions ..(.,. ∈ ?.) by some family of complex-valued functions .(., .) which inherit the following property of the indicated exponential functions: The exponential functions are connected with the family of ordinary translation operators
15#
發(fā)表于 2025-3-24 02:27:41 | 只看該作者
General Theory of Hypercomplex Systems, (commutative) hypercomplex system with continuous basis and developed harmonic analysis for such systems. Each hypercomplex system is a Banach *-algebra of functions on a locally compact space (the basis of a hypercomplex system). It generalizes the concept of hypercomplex system with finite basis
16#
發(fā)表于 2025-3-24 08:40:14 | 只看該作者
Examples of Hypercomplex Systems,tence of a Fourier-type transformation satisfying the Plancherel theorem and the inversion formula. These generalized translation operators often possess additional properties which enable one to construct a hypercomplex system. In view of the existence of developed harmonic analysis for hypercomple
17#
發(fā)表于 2025-3-24 13:11:35 | 只看該作者
18#
發(fā)表于 2025-3-24 17:07:08 | 只看該作者
ecifications of multiagent system. The benefits of formal methods become clearer when we recognize the cost of developing a defective multiagent system. This paper seeks to introduce engineers to the possibilities of applying formal methods for multiagent systems. To this end, it discusses selected
19#
發(fā)表于 2025-3-24 19:35:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:18:35 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
依兰县| 江都市| 平安县| 兴城市| 军事| 通山县| 陕西省| 博兴县| 苍南县| 瑞丽市| 肥西县| 时尚| 亳州市| 西藏| 盘山县| 田东县| 镶黄旗| 阿勒泰市| 体育| 辽宁省| 广汉市| 鄂温| 克什克腾旗| 开平市| 尼木县| 卓资县| 瑞昌市| 琼海市| 镇宁| 平陆县| 松阳县| 远安县| 彭山县| 湾仔区| 兴城市| 龙游县| 阳信县| 咸丰县| 长沙县| 岳阳县| 义马市|