找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Harmonic Analysis and Representations of Semisimple Lie Groups; Lectures given at th J. A. Wolf,M. Cahen,M. Wilde Book 1980 D. Reidel Publi

[復(fù)制鏈接]
樓主: ODDS
41#
發(fā)表于 2025-3-28 16:49:15 | 只看該作者
Finite-Dimensional Representation Theoryl Theorem for compact semisimple groups in Section 15. Finally, in Section 16, we specialize to the decomposition of the . space of a compact symmetric space and give Cartan’s highest weight theory for class one representations.
42#
發(fā)表于 2025-3-28 22:39:43 | 只看該作者
43#
發(fā)表于 2025-3-29 02:26:25 | 只看該作者
General Backgroundions: (1) What sort of regularity properties should . possess for the decomposition to make any sense at all?; (2) In what sense does the series converge? These questions (or their analogues) will persist throughout our investigations.
44#
發(fā)表于 2025-3-29 04:56:00 | 只看該作者
Infinite-Dimensional Representationsct subgroup . ? G has multiplicity .(к, π|.) ≤ dim к. This yields up the infinitesimal character χ.: .(g)→ ? and the distribution character .: C.(G) → ?, and consequently the differential equations. for .which are the starting point for serious harmonic analysis on ..
45#
發(fā)表于 2025-3-29 10:32:57 | 只看該作者
Nonlinear Representations of Lie Groups and ApplicationsStill, what more specific motivations do we have to study nonlinear representations of Lie groups in linear spaces? We may of course reverse the argument and ask why in the past did we study mainly linear representations of a nonlinear object?!
46#
發(fā)表于 2025-3-29 14:01:29 | 只看該作者
47#
發(fā)表于 2025-3-29 18:41:56 | 只看該作者
48#
發(fā)表于 2025-3-29 19:56:43 | 只看該作者
49#
發(fā)表于 2025-3-30 00:47:36 | 只看該作者
Infinite-Dimensional Representations.. The basic fact for an irreducible unitary representation . of . on a Hilbert space ?, is that every irreducible representation к of a maximal compact subgroup . ? G has multiplicity .(к, π|.) ≤ dim к. This yields up the infinitesimal character χ.: .(g)→ ? and the distribution character .: C.(G) →
50#
發(fā)表于 2025-3-30 05:56:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉义县| 辉南县| 兴和县| 巨鹿县| 疏勒县| 那曲县| 营山县| 东安县| 江川县| 安达市| 平湖市| 苏尼特左旗| 宁明县| 榕江县| 灵石县| 那曲县| 崇明县| 家居| 新竹县| 乌苏市| 县级市| 娱乐| 吕梁市| 高州市| 宁晋县| 城固县| 古田县| 静安区| 星座| 英山县| 云浮市| 涿州市| 广西| 项城市| 云林县| 宿迁市| 余庆县| 长白| 仙居县| 裕民县| 墨玉县|