找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hands-on Scikit-Learn for Machine Learning Applications; Data Science Fundame David Paper Book 2020 David Paper 2020 Scikit-Learn.Anaconda

[復(fù)制鏈接]
查看: 15059|回復(fù): 44
樓主
發(fā)表于 2025-3-21 19:38:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Hands-on Scikit-Learn for Machine Learning Applications
副標(biāo)題Data Science Fundame
編輯David Paper
視頻videohttp://file.papertrans.cn/424/423993/423993.mp4
概述Introduces the popular Scikit-Learn library for machine learning algorithms in Python.Provides examples in Python that are made specifically for data science.Teaches principles of machine learning tha
圖書封面Titlebook: Hands-on Scikit-Learn for Machine Learning Applications; Data Science Fundame David Paper Book 2020 David Paper 2020 Scikit-Learn.Anaconda
描述Aspiring data science professionals can learn the Scikit-Learn library along with the fundamentals of machine learning with this book. The book combines the Anaconda Python distribution with the popular Scikit-Learn library to demonstrate a wide range of supervised and unsupervised machine learning algorithms. Care is taken to walk you through the principles of machine learning through clear examples written in Python that you can try out and experiment with at home on your own machine..All applied math and programming skills required to master the content are covered in this book. In-depth knowledge of object-oriented programming is not required as working and complete examples are provided and explained. Coding examples are in-depth and complex when necessary. They are also concise, accurate, and complete, and complement the machine learning concepts introduced. Working the examples helps to build the skills necessary to understand and apply complexmachine learning algorithms..Hands-on Scikit-Learn for Machine Learning Applications. is an excellent starting point for those pursuing a career in machine learning. Students of this book will learn the fundamentals that are a prerequi
出版日期Book 2020
關(guān)鍵詞Scikit-Learn; Anaconda Distribution; Python; NumPy; Machine Learning; Data Science; Classifiers; Confusion
版次1
doihttps://doi.org/10.1007/978-1-4842-5373-1
isbn_softcover978-1-4842-5372-4
isbn_ebook978-1-4842-5373-1
copyrightDavid Paper 2020
The information of publication is updating

書目名稱Hands-on Scikit-Learn for Machine Learning Applications影響因子(影響力)




書目名稱Hands-on Scikit-Learn for Machine Learning Applications影響因子(影響力)學(xué)科排名




書目名稱Hands-on Scikit-Learn for Machine Learning Applications網(wǎng)絡(luò)公開度




書目名稱Hands-on Scikit-Learn for Machine Learning Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hands-on Scikit-Learn for Machine Learning Applications被引頻次




書目名稱Hands-on Scikit-Learn for Machine Learning Applications被引頻次學(xué)科排名




書目名稱Hands-on Scikit-Learn for Machine Learning Applications年度引用




書目名稱Hands-on Scikit-Learn for Machine Learning Applications年度引用學(xué)科排名




書目名稱Hands-on Scikit-Learn for Machine Learning Applications讀者反饋




書目名稱Hands-on Scikit-Learn for Machine Learning Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:38:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:25:46 | 只看該作者
地板
發(fā)表于 2025-3-22 08:37:23 | 只看該作者
5#
發(fā)表于 2025-3-22 08:51:24 | 只看該作者
6#
發(fā)表于 2025-3-22 13:36:46 | 只看該作者
7#
發(fā)表于 2025-3-22 17:41:24 | 只看該作者
Predictive Modeling Through Regression,learning the strength of association between independent variables (or features) and continuous dependent variables (or outcomes). A . output variable is a real value such as an integer or floating point value often quantified as amounts and sizes.
8#
發(fā)表于 2025-3-23 00:11:20 | 只看該作者
David PaperIntroduces the popular Scikit-Learn library for machine learning algorithms in Python.Provides examples in Python that are made specifically for data science.Teaches principles of machine learning tha
9#
發(fā)表于 2025-3-23 02:51:27 | 只看該作者
10#
發(fā)表于 2025-3-23 07:55:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
启东市| 嵊州市| 南华县| 皋兰县| 绥江县| 名山县| 卢龙县| 武乡县| 汪清县| 石泉县| 西华县| 昂仁县| 沁阳市| 肥乡县| 永川市| 安泽县| 漳州市| 康定县| 古交市| 新乡市| 新营市| 常宁市| 龙胜| 香河县| 漳浦县| 石首市| 宁武县| 濮阳县| 芦山县| 县级市| 龙岩市| 乳山市| 通海县| 安新县| 阜宁县| 诸暨市| 东平县| 湾仔区| 兰州市| 越西县| 正阳县|