找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbuch des Umweltschutzes und der Umweltschutztechnik; Band 2: Produktions- Heinz Brauer Book 1996 Springer-Verlag Berlin Heidelberg 1996

[復制鏈接]
樓主: Sediment
31#
發(fā)表于 2025-3-26 22:42:43 | 只看該作者
32#
發(fā)表于 2025-3-27 03:38:43 | 只看該作者
R. Jansen,P. Külpmannntities and relation types. Most existing methods only concentrate on knowledge triples, ignoring logic rules which contain rich background knowledge. Although there has been some work aiming at leveraging both knowledge triples and logic rules, they ignore the transitivity and asymmetry of logic ru
33#
發(fā)表于 2025-3-27 05:33:59 | 只看該作者
34#
發(fā)表于 2025-3-27 13:01:08 | 只看該作者
35#
發(fā)表于 2025-3-27 17:05:49 | 只看該作者
F. Mosers, graph neural networks (GNNs) have been successfully applied in many embedding-based EA methods. However, existing GNN-based methods either suffer from the structural heterogeneity issue that especially appears in the real KG distributions or ignore the heterogeneous representation learning for un
36#
發(fā)表于 2025-3-27 18:39:38 | 只看該作者
obtained from illegal activities. Although recent approaches based on Graph Neural Networks (GNNs) have shown remarkable achievements in fraud detection, investigating cryptocurrency transaction networks is subject to the following challenges: 1) There is a lack of useful node features as cryptocur
37#
發(fā)表于 2025-3-27 21:57:19 | 只看該作者
H. J. Haepp,W. Pollmanng imbalanced data; association; privacy and security; supervised learning; novel algorithms; mining multi-media/multi-dimensional data; application; mining grap978-3-030-47425-6978-3-030-47426-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
38#
發(fā)表于 2025-3-28 04:33:20 | 只看該作者
nique to capture the general pattern underlying the data, thus guaranteeing the model robustness under some data missing circumstances. Extensive experiments on three widely used citation network datasets show that our proposed method has achieved or matched state-of-the-art results on link predicti
39#
發(fā)表于 2025-3-28 09:03:25 | 只看該作者
E. Gock,J. K?hler,V. Vogtormal data. Second, we adopt Spatial-Temporal Transformer with distinct attention modules to detect diverse anomalies. Extensive experiments on five real-world datasets are conducted, the results show that our method is superior to existing state-of-the-art approaches.
40#
發(fā)表于 2025-3-28 11:00:12 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 02:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
灵川县| 咸阳市| 永州市| 准格尔旗| 剑川县| 油尖旺区| 虞城县| 娄烦县| 七台河市| 车险| 台安县| 乐至县| 柯坪县| 且末县| 正宁县| 勃利县| 孟州市| 桑植县| 紫金县| 凌云县| 双柏县| 梁平县| 莱西市| 秦安县| 房山区| 高雄县| 宜君县| 崇左市| 田林县| 乾安县| 喀什市| 焦作市| 安塞县| 交城县| 亳州市| 环江| 郑州市| 崇仁县| 沙田区| 九江县| 龙胜|