找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Social Sciences and Global Public Health; Pranee Liamputtong Reference work 2023 Springer Nature Switzerland AG 2023 global he

[復(fù)制鏈接]
樓主: Taylor
31#
發(fā)表于 2025-3-26 22:28:25 | 只看該作者
32#
發(fā)表于 2025-3-27 03:43:18 | 只看該作者
33#
發(fā)表于 2025-3-27 06:00:11 | 只看該作者
34#
發(fā)表于 2025-3-27 12:49:20 | 只看該作者
35#
發(fā)表于 2025-3-27 14:34:09 | 只看該作者
Patricia Chiao-Tzu Lee,Cathy Chao-Yuan Wu,Josh Tingntization in two dimensions. The conformal groups are determined and the appearence of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. Part II surveys more advanced top
36#
發(fā)表于 2025-3-27 20:47:37 | 只看該作者
Laura Vanderbloemen,Hao Thi My Nguyen,Moleen Maramba,Dev Kapilarameterization . of a surface . = . (.) ? ?., where . ? ?. is an open or closed rectangle. This corresponds to the idea of a one-dimensional object, the ., which moves in the space ?. and wipes out the two-dimensional surface . = . (.). The classical fields (i.e. the kinetic variables of the theory
37#
發(fā)表于 2025-3-28 01:06:18 | 只看該作者
Heath Pillenssical conformal symmetry in n dimensions and its quantization in two dimensions. In particular, the conformal groups are determined and the appearance of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central exte
38#
發(fā)表于 2025-3-28 03:06:30 | 只看該作者
39#
發(fā)表于 2025-3-28 06:41:20 | 只看該作者
Yvonne Parrynd its quantization in two dimensions. In particular, the conformal groups are determined and the appearance of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. The seco
40#
發(fā)表于 2025-3-28 11:34:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长葛市| 龙山县| 潢川县| 宜黄县| 镇雄县| 石屏县| 治县。| 南汇区| 屏边| 清水县| 龙里县| 绍兴县| 五台县| 恩施市| 通化县| 板桥市| 钦州市| 历史| 高密市| 兴和县| 泸州市| 顺平县| 新化县| 景宁| 十堰市| 闽侯县| 尖扎县| 曲阜市| 林芝县| 五原县| 界首市| 靖西县| 万源市| 建德市| 南川市| 乐都县| 嫩江县| 广水市| 涟源市| 枣庄市| 澄江县|