找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Smart Energy Systems; Michel Fathi,Enrico Zio,Panos M. Pardalos Living reference work 20210th edition Renewable energy.Artifi

[復(fù)制鏈接]
樓主: 減輕
51#
發(fā)表于 2025-3-30 09:06:34 | 只看該作者
Application of Machine Learning in Occupant and Indoor Environment Behavior Modeling: Sensors, Methoccupant and indoor environment behavior modeling. In the first part of the chapter, various methodologies employed for non-intrusive occupancy status estimation, including the utilized sensors, feature generation methods, and detection algorithms, are reviewed. The second part is instead dedicated
52#
發(fā)表于 2025-3-30 12:38:35 | 只看該作者
53#
發(fā)表于 2025-3-30 19:16:11 | 只看該作者
54#
發(fā)表于 2025-3-30 23:54:26 | 只看該作者
55#
發(fā)表于 2025-3-31 02:32:38 | 只看該作者
Economical and Reliable Design of a Hybrid Energy System in a Smart Grid Network,designed hybrid system’s efficiency. In our study, the associated costs in the objective function consist of initial investment costs, operational and maintenance costs, and the cost related to loss of load. To find the optimal solution with the nonlinear mixed-integer function, we utilized particle
56#
發(fā)表于 2025-3-31 05:52:04 | 只看該作者
Energy Simulation Optimization for Building Insulation Materials,have become one of the most fundamental strategies preferred by governments. The heating and cooling demands have an important share in energy consumption in buildings. Therefore, thermal insulation systems have become the basic building elements to design energy-efficient buildings. Determining sui
57#
發(fā)表于 2025-3-31 12:33:32 | 只看該作者
58#
發(fā)表于 2025-3-31 13:46:32 | 只看該作者
59#
發(fā)表于 2025-3-31 19:05:52 | 只看該作者
Machine Learning for Building Energy Modeling,d climate change-resilient smart energy systems in buildings. This chapter presents an overview of building energy modeling (BEM) using ML models and its implementation for the projection of building energy demand under future climate change scenarios generated by global circulation models (GCMs). I
60#
發(fā)表于 2025-3-31 22:50:53 | 只看該作者
Big Data Applications for Improving the Reliability of the French Electricity Distribution Grid,illions of customers. Access to the electricity network is necessary for a major part of every day life, as well as for governmental services such as health and transport, especially in times of crisis. French territory is subject to the risk of storms, heat waves, thunderstorms, and floods. With th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
来凤县| 孟州市| 新宁县| 日照市| 石屏县| 拉萨市| 无为县| 油尖旺区| 杨浦区| 商洛市| 江孜县| 临邑县| 济源市| 天镇县| 蒙城县| 绩溪县| 雅江县| 永吉县| 滦平县| 韶山市| 神木县| 海城市| 娄底市| 潞西市| 香港| 将乐县| 九寨沟县| 乌审旗| 宁国市| 陈巴尔虎旗| 抚顺县| 皋兰县| 蓬溪县| 洛浦县| 临夏市| 山丹县| 积石山| 祁连县| 迁西县| 化德县| 大荔县|