找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Religion and Social Institutions; Helen Rose Ebaugh Textbook 2006 Springer-Verlag US 2006 Gender.Institution.Nation.Transnatio

[復(fù)制鏈接]
樓主: lexicographer
31#
發(fā)表于 2025-3-26 23:31:02 | 只看該作者
32#
發(fā)表于 2025-3-27 04:08:20 | 只看該作者
33#
發(fā)表于 2025-3-27 08:57:40 | 只看該作者
Peter L. Benson Ph.D.,Pamela Ebstyne KingWe are now ready to examine the dynamics of discrete systems. We begin by defining and categorizing the simplest types of behavior. In most of what follows, we will assume that the range of the function in question is a subset of the domain. Exceptions to this practice will be noted.
34#
發(fā)表于 2025-3-27 11:29:28 | 只看該作者
35#
發(fā)表于 2025-3-27 16:29:11 | 只看該作者
36#
發(fā)表于 2025-3-27 20:11:43 | 只看該作者
37#
發(fā)表于 2025-3-28 00:14:07 | 只看該作者
38#
發(fā)表于 2025-3-28 05:50:03 | 只看該作者
John P. Hoffmann,Stephen J. BahrThis chapter explores the notion of demographic fuzziness in modeling of bio-mathematical phenomena. The concept of demographic fuzziness is illustrated by looking at both continuous and discrete models. The relatively new idea of p-fuzzy systems, which combines dynamical systems with fuzzy logic, is illustrated via the dynamical models.
39#
發(fā)表于 2025-3-28 07:42:10 | 只看該作者
Though our main topic of concern is surfaces, prior to studying smooth surfaces we take a small detour through the study of smooth curves in ?. to develop some important tools. Our treatment of curves will be brief; more about curves, including such results such as the pretty Milnor-Fary Theorem, can be found in [M-P] or [DO1].
40#
發(fā)表于 2025-3-28 11:30:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北市| 南充市| 遂宁市| 彩票| 克什克腾旗| 漾濞| 九江县| 林州市| 盈江县| 徐汇区| 留坝县| 鄂托克前旗| 平凉市| 资兴市| 通江县| 两当县| 嘉兴市| 连平县| 旺苍县| 宾阳县| 元阳县| 江口县| 宕昌县| 西畴县| 新源县| 亳州市| 邹城市| 察隅县| 南开区| 鸡泽县| 葫芦岛市| 宁都县| 乐清市| 余姚市| 樟树市| 兰溪市| 肇源县| 泗洪县| 蒙阴县| 兴城市| 沁水县|