找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Reinforcement Learning and Control; Kyriakos G. Vamvoudakis,Yan Wan,Derya Cansever Book 2021 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: charity
21#
發(fā)表于 2025-3-25 03:37:12 | 只看該作者
22#
發(fā)表于 2025-3-25 11:06:55 | 只看該作者
Fundamental Design Principles for Reinforcement Learning Algorithms While the surge in activity is creating excitement and opportunities, there is a gap in understanding of two basic principles that these algorithms need to satisfy for any successful application. One has to do with guarantees for convergence, and the other concerns the convergence rate. The vast ma
23#
發(fā)表于 2025-3-25 12:15:06 | 只看該作者
Mixed Density Methods for Approximate Dynamic Programmingods typically require a persistence of excitation (PE) condition for convergence. In this chapter, data-based methods will be discussed to soften the stringent PE condition by learning via simulation-based extrapolation. The development is based on the observation that, given a model of the system,
24#
發(fā)表于 2025-3-25 17:54:51 | 只看該作者
25#
發(fā)表于 2025-3-25 22:53:18 | 只看該作者
26#
發(fā)表于 2025-3-26 00:31:45 | 只看該作者
27#
發(fā)表于 2025-3-26 04:22:21 | 只看該作者
28#
發(fā)表于 2025-3-26 10:16:06 | 只看該作者
29#
發(fā)表于 2025-3-26 15:57:11 | 只看該作者
Reinforcement Learning-Based Model Reduction for Partial Differential Equations: Application to the ple, PDEs are used to model flexible beams and ropes?[., .], crowd dynamics?[., .], or fluid dynamics?[., .]. However, PDEs are infinite-dimensional systems, making them hard to solve in closed form, and computationally demanding to solve numerically. For instance, when using finite element methods
30#
發(fā)表于 2025-3-26 16:47:32 | 只看該作者
Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms decision-making problems in machine learning. Most of the successful RL applications, e.g., the games of Go and Poker, robotics, and autonomous driving, involve the participation of more than one single agent, which naturally fall into the realm of multi-agent RL (MARL), a domain with a relatively
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
磴口县| 绥化市| 平舆县| 扎鲁特旗| 昌乐县| 东明县| 浪卡子县| 宿州市| 南靖县| 弋阳县| 徐州市| 方山县| 灯塔市| 漠河县| 轮台县| 六盘水市| 红河县| 邵阳县| 垫江县| 台北县| 长葛市| 象州县| 安福县| 宣化县| 贵定县| 庐江县| 湖南省| 清河县| 天峨县| 闸北区| 东光县| 上杭县| 大余县| 高州市| 美姑县| 乐清市| 阿拉善右旗| 克什克腾旗| 兴安县| 宁安市| 定州市|