找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids; Yoshikazu Giga,Antonín Novotny Reference work 2018 Springer Internationa

[復(fù)制鏈接]
樓主: Flange
21#
發(fā)表于 2025-3-25 03:33:04 | 只看該作者
Steady-State Navier-Stokes Flow Around a Moving Bodyperties, and (steady and unsteady) bifurcation. Moreover, we will perform a rather complete analysis of the longtime behavior of dynamical perturbation to the above flow, thus inferring, in particular, sufficient conditions for their stability and asymptotic stability.
22#
發(fā)表于 2025-3-25 09:27:25 | 只看該作者
Time-Periodic Solutions to the Navier-Stokes Equationsnt of view, are considered: a bounded domain, an exterior domain, and an infinite pipe. Methods to show existence of both weak and strong solutions are introduced. Moreover, questions regarding regularity, uniqueness, and asymptotic structure at spatial infinity of solutions are addressed.
23#
發(fā)表于 2025-3-25 14:42:42 | 只看該作者
The Inviscid Limit and Boundary Layers for Navier-Stokes Flowsthematical fluid mechanics. The problem is classified into two categories: the case when the physical boundary is absent, and the case when the physical boundary is present and the effect of the boundary layer becomes significant. The aim of this chapter is to review recent progress on the mathematical analysis of this problem in each category.
24#
發(fā)表于 2025-3-25 17:40:46 | 只看該作者
Reference work 2018to handling problems in fluid mechanics. Since the field of fluid mechanics is huge, it is almost impossible to cover many topics. In this handbook, we focus on mathematical analysis on viscous Newtonian fluid. The first part is devoted to mathematical analysis on incompressible fluids while part 2
25#
發(fā)表于 2025-3-25 21:02:48 | 只看該作者
26#
發(fā)表于 2025-3-26 01:15:56 | 只看該作者
27#
發(fā)表于 2025-3-26 06:45:32 | 只看該作者
The Stokes Equation in the ,-Setting: Well-Posedness and Regularity Propertiestions. Classical as well as modern approaches to well-posedness results for strong solutions to the Stokes equation, to the Helmholtz decomposition, to the Stokes semigroup, and to mixed maximal . ? .-regularity results for 1???p,?. < . are presented via the theory of .-sectorial operators. Of conce
28#
發(fā)表于 2025-3-26 09:47:24 | 只看該作者
29#
發(fā)表于 2025-3-26 16:39:15 | 只看該作者
Leray’s Problem on Existence of Steady-State Solutions for the Navier-Stokes Flowded domain with multiple boundary components. The boundary conditions are assumed only to satisfy the necessary requirement of zero total flux. The authors have proved that the problem is solvable in arbitrary bounded planar or three-dimensional axially symmetric domains. The proof uses Bernoulli’s
30#
發(fā)表于 2025-3-26 18:54:50 | 只看該作者
Stationary Navier-Stokes Flow in Exterior Domains and Landau Solutionsor of the flow at infinity, especially optimal decay (summability) observed in general and the asymptotic structure. When the obstacle is translating, the answer is found in some classic literature by Finn; in fact, the optimal summability is . with . > 2 and the leading profile is the Oseen fundame
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固原市| 新昌县| 丹东市| 齐齐哈尔市| 安溪县| 奉新县| 德兴市| 金平| 榕江县| 木里| 普宁市| 余姚市| 山西省| 道孚县| 延寿县| 泉州市| 毕节市| 九台市| 繁峙县| 莎车县| 绩溪县| 玉龙| 林甸县| 灵山县| 怀柔区| 那坡县| 玉门市| 牡丹江市| 宝鸡市| 阳原县| 高要市| 偃师市| 岑溪市| 荔波县| 阜平县| 湖州市| 双柏县| 巴楚县| 毕节市| 四川省| 垫江县|