找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of K-Theory; Eric M. Friedlander,Daniel R. Grayson Reference work 2005 Springer-Verlag Berlin Heidelberg 2005 Algebraic K-theory.

[復(fù)制鏈接]
樓主: 珍愛
21#
發(fā)表于 2025-3-25 05:56:45 | 只看該作者
22#
發(fā)表于 2025-3-25 09:47:36 | 只看該作者
23#
發(fā)表于 2025-3-25 13:56:00 | 只看該作者
Alexander B. Goncharovf jedenfalls schien erschüttert.. Dennoch hielt Adorno scheinbar konservativ an ihm als einer unverzichtbaren Grundkategorie philosophischer ?sthetik fest, um seine Aussagekraft an den seiner Ansicht nach fortgeschrittensten Entwicklungen der modernen Kunst zu überprüfen.
24#
發(fā)表于 2025-3-25 18:32:24 | 只看該作者
25#
發(fā)表于 2025-3-25 23:15:11 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:30 | 只看該作者
Deloopings in Algebraic ,-Theorye loop maps ([1]). In fact, . is best thought of as a functor not to topological spaces, but to the category of . ([2, 11]). Recall that a spectrum is a family of based topological spaces {..}., together with bonding maps .. : .. → .., which can be taken to be homeomorphisms. There is a great deal of value to this refinement of the functor ..
27#
發(fā)表于 2025-3-26 06:20:24 | 只看該作者
Witt Groupsl of generality is hard to find in the literature, like e.g. the “classical sublagrangian reduction” of Sect. 1.2.5. In Sect. 1.3, we specialize this classical material to the even more classical examples listed above: schemes, rings, fields. We include some motivations for the use of Witt groups.
28#
發(fā)表于 2025-3-26 09:28:35 | 只看該作者
29#
發(fā)表于 2025-3-26 14:39:12 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:44 | 只看該作者
Motivic Cohomology, ,-Theory and Topological Cyclic Homologyplications in arithmetic algebraic geometry (in particular, we do not discuss non-commutative rings), and our main focus lies on sheaf theoretic results for smooth schemes, which then lead to global results using local-to-global methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新沂市| 广河县| 长葛市| 福鼎市| 永康市| 洞口县| 土默特右旗| 曲靖市| 永善县| 桦甸市| 伊宁县| 西充县| 陈巴尔虎旗| 清远市| 胶南市| 汉寿县| 福海县| 登封市| 津南区| 平陆县| 栖霞市| 揭阳市| 桦南县| 宿迁市| 临澧县| 兴山县| 青川县| 富平县| 离岛区| 务川| 丰原市| 凌海市| 临海市| 含山县| 铜梁县| 犍为县| 内江市| 阳山县| 横峰县| 沂源县| 康平县|