找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Geometry and Topology of Singularities III; José Luis Cisneros-Molina,Lê D?ng Tráng,José Seade Book 2022 Springer Nature Switz

[復(fù)制鏈接]
樓主: 烹飪
21#
發(fā)表于 2025-3-25 06:57:38 | 只看該作者
22#
發(fā)表于 2025-3-25 10:20:44 | 只看該作者
Residues and Hyperfunctions,e cohomology of the sheaf of holomorphic forms. As an application, we give explicit expressions of Sato hyperfunctions and related operations including the embedding of the space of real analytic functions into that of hyperfunctions, where as well the Thom class plays an important role.
23#
發(fā)表于 2025-3-25 12:53:11 | 只看該作者
Segre Classes and Invariants of Singular Varieties,s of characteristic classes for singular varieties, and on classes of Lê cycles. We precede the main discussion with a review of relevant background notions in algebraic geometry and intersection theory.
24#
發(fā)表于 2025-3-25 16:51:47 | 只看該作者
Mixed Hodge Structures Applied to Singularities,ology of the Milnor fibre possible. The approaches by algebraic analysis and by motivic integration are discussed, and the spectrum with its properties is considered. The paper ends with a treatment of Du Bois singularities.
25#
發(fā)表于 2025-3-25 22:51:01 | 只看該作者
Handbook of Geometry and Topology of Singularities III
26#
發(fā)表于 2025-3-26 04:03:11 | 只看該作者
27#
發(fā)表于 2025-3-26 06:31:49 | 只看該作者
28#
發(fā)表于 2025-3-26 10:17:42 | 只看該作者
29#
發(fā)表于 2025-3-26 14:02:59 | 只看該作者
30#
發(fā)表于 2025-3-26 18:53:06 | 只看該作者
Constructible Sheaf Complexes in Complex Geometry and Applications,f characteristic cycles of constructible functions, and to weak Lefschetz and Artin-Grothendieck type theorems. We recall the construction of Deligne’s nearby and vanishing cycle functors, prove that they preserve constructible complexes, and discuss their relation with the perverse t-structure. We
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垫江县| 那曲县| 辽中县| 成都市| 邵阳县| 泸西县| 柘荣县| 万全县| 民权县| 铜川市| 保山市| 泰和县| 泸定县| 运城市| 南川市| 张家川| 泗水县| 鄂托克旗| 南华县| 长岭县| 伊通| 苏尼特左旗| 托克逊县| 高唐县| 呼图壁县| 长宁区| 蓬安县| 桃园市| 蛟河市| 平潭县| 孝昌县| 兴山县| 平江县| 双辽市| 侯马市| 苏尼特右旗| 宁夏| 萍乡市| 中阳县| 沧州市| 柏乡县|