找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Functional Equations; Functional Inequalit Themistocles M. Rassias Book 2014 Springer Science+Business Media, LLC 2014 Cauchy e

[復制鏈接]
樓主: ED431
11#
發(fā)表于 2025-3-23 12:04:53 | 只看該作者
12#
發(fā)表于 2025-3-23 17:15:09 | 只看該作者
13#
發(fā)表于 2025-3-23 18:33:05 | 只看該作者
,On a Relation Between the Hardy–Hilbert and Gabriel Inequalities,quality. As an application, we obtain a sharper form of the general Hardy-Hilbert inequality. The integral analogues of our main results are also given. Some Gabriel-type inequalities are also considered.
14#
發(fā)表于 2025-3-24 01:50:13 | 只看該作者
Multiplicative Ostrowski and Trapezoid Inequalities,an in the following sense:.We consider the cases of absolutely continuous and logarithmic convex functions. We apply these inequalities to provide approximations for the integral of .; and the first moment of . around zero, that is, .; for an absolutely continuous function . on [.].
15#
發(fā)表于 2025-3-24 03:03:32 | 只看該作者
Invariance in the Family of Weighted Gini Means, method of series expansion of means to determine the complementary with respect to a weighted Gini mean. The invariance in the family of weighted Gini means is also studied. The computer algebra Maple was used for solving some complicated systems of equations.
16#
發(fā)表于 2025-3-24 06:35:04 | 只看該作者
Comparisons of Means and Related Functional Inequalities,s in this field which according to the best of author’s knowledge remain open. Last section of this paper is devoted to a new, more general functional inequality and a joint generalization of several earlier results is obtained.
17#
發(fā)表于 2025-3-24 13:17:20 | 只看該作者
18#
發(fā)表于 2025-3-24 17:25:31 | 只看該作者
19#
發(fā)表于 2025-3-24 21:33:12 | 只看該作者
20#
發(fā)表于 2025-3-25 01:11:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
柳林县| 兰溪市| 五常市| 新乡市| 穆棱市| 赤壁市| 蕉岭县| 称多县| 余干县| 勃利县| 微博| 景宁| 永平县| 股票| 甘谷县| 通海县| 雅安市| 昭觉县| 梓潼县| 阳谷县| 洪湖市| 朝阳市| 麦盖提县| 连山| 兴海县| 茌平县| 梧州市| 柳河县| 丹棱县| 沾益县| 资阳市| 商南县| 水城县| 锡林浩特市| 香格里拉县| 淳安县| 云龙县| 富民县| 黄浦区| 宜阳县| 阿坝县|