找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Functional Equations; Stability Theory Themistocles M. Rassias Book 2014 Springer Science+Business Media, LLC 2014 Cauchy equat

[復(fù)制鏈接]
樓主: Corrugate
11#
發(fā)表于 2025-3-23 09:58:07 | 只看該作者
https://doi.org/10.1007/978-3-642-19559-4quence of such polynomials to the solution of the equation. The second part is devoted to present several approximation methods for finding solutions of so-called Kordylewski–Kuczma functional equation. Finally, in the last one we present a stability result in the sense of Ulam–Hyers–Rassias for gen
12#
發(fā)表于 2025-3-23 16:43:31 | 只看該作者
https://doi.org/10.1007/978-3-322-90142-2able).in the class of functions ? mapping a nonempty set . into a Banach algebra . over a field ., where . is a fixed positive integer, . for ., and the functions ., . and . for ., are given. A particular case of the equation, with . for ., is the very well-known linear equation
13#
發(fā)表于 2025-3-23 21:44:46 | 只看該作者
Zuverl?ssigkeit im Maschinenbauns in a group when the target space of the functions is a 2-divisible commutative group. As the main result we find an approximate sequence for the unknown function satisfying the Pexider functional inequality, the limit of which is the approximate function in the Hyers–Ulam stability theorem.
14#
發(fā)表于 2025-3-24 02:04:52 | 只看該作者
15#
發(fā)表于 2025-3-24 04:11:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:09:46 | 只看該作者
17#
發(fā)表于 2025-3-24 11:38:42 | 只看該作者
18#
發(fā)表于 2025-3-24 15:31:11 | 只看該作者
On Stability of the Linear and Polynomial Functional Equations in Single Variable,able).in the class of functions ? mapping a nonempty set . into a Banach algebra . over a field ., where . is a fixed positive integer, . for ., and the functions ., . and . for ., are given. A particular case of the equation, with . for ., is the very well-known linear equation
19#
發(fā)表于 2025-3-24 21:07:31 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固安县| 云龙县| 凤山市| 西城区| 三穗县| 汤原县| 南川市| 腾冲县| 东乡县| 灯塔市| 青龙| 连平县| 城口县| 乌拉特后旗| 澳门| 怀远县| 鹤岗市| 长宁县| 黑龙江省| 和政县| 沙洋县| 体育| 怀远县| 德州市| 锦屏县| 河间市| 上犹县| 来宾市| 麻阳| 奉化市| 内江市| 克拉玛依市| 公安县| 汉源县| 西和县| 平和县| 宁远县| 个旧市| 安新县| 友谊县| 馆陶县|