找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook of Functional Equations; Stability Theory Themistocles M. Rassias Book 2014 Springer Science+Business Media, LLC 2014 Cauchy equat

[復(fù)制鏈接]
樓主: Corrugate
11#
發(fā)表于 2025-3-23 09:58:07 | 只看該作者
https://doi.org/10.1007/978-3-642-19559-4quence of such polynomials to the solution of the equation. The second part is devoted to present several approximation methods for finding solutions of so-called Kordylewski–Kuczma functional equation. Finally, in the last one we present a stability result in the sense of Ulam–Hyers–Rassias for gen
12#
發(fā)表于 2025-3-23 16:43:31 | 只看該作者
https://doi.org/10.1007/978-3-322-90142-2able).in the class of functions ? mapping a nonempty set . into a Banach algebra . over a field ., where . is a fixed positive integer, . for ., and the functions ., . and . for ., are given. A particular case of the equation, with . for ., is the very well-known linear equation
13#
發(fā)表于 2025-3-23 21:44:46 | 只看該作者
Zuverl?ssigkeit im Maschinenbauns in a group when the target space of the functions is a 2-divisible commutative group. As the main result we find an approximate sequence for the unknown function satisfying the Pexider functional inequality, the limit of which is the approximate function in the Hyers–Ulam stability theorem.
14#
發(fā)表于 2025-3-24 02:04:52 | 只看該作者
15#
發(fā)表于 2025-3-24 04:11:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:09:46 | 只看該作者
17#
發(fā)表于 2025-3-24 11:38:42 | 只看該作者
18#
發(fā)表于 2025-3-24 15:31:11 | 只看該作者
On Stability of the Linear and Polynomial Functional Equations in Single Variable,able).in the class of functions ? mapping a nonempty set . into a Banach algebra . over a field ., where . is a fixed positive integer, . for ., and the functions ., . and . for ., are given. A particular case of the equation, with . for ., is the very well-known linear equation
19#
發(fā)表于 2025-3-24 21:07:31 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 11:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯昌县| 衡阳市| 遂宁市| 庆云县| 太康县| 苍梧县| 屏山县| 惠来县| 永兴县| 庄河市| 攀枝花市| 纳雍县| 会昌县| 遵义县| 湖南省| 平舆县| 满城县| 玉门市| 泽州县| 杨浦区| 应用必备| 宁强县| 老河口市| 安西县| 屏南县| 葫芦岛市| 行唐县| 隆化县| 旬阳县| 平谷区| 清徐县| 富民县| 突泉县| 水城县| 泾源县| 浮梁县| 垦利县| 行唐县| 怀远县| 贞丰县| 万州区|