找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamilton’s Principle in Continuum Mechanics; Anthony Bedford Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive li

[復(fù)制鏈接]
查看: 22913|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:02:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hamilton’s Principle in Continuum Mechanics
編輯Anthony Bedford
視頻videohttp://file.papertrans.cn/421/420644/420644.mp4
概述?Presents a comprehensive, rigorous description of the application of Hamilton’s principle to continuous media.Includes recent applications of the principle to continua with microstructure.Discusses f
圖書封面Titlebook: Hamilton’s Principle in Continuum Mechanics;  Anthony Bedford Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive li
描述.This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations.? For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces..
出版日期Book 2021
關(guān)鍵詞Continuum mechanics; Calculus of Variations; Hamiltonian Mechanics; Continuous media; Solid Mechanics
版次1
doihttps://doi.org/10.1007/978-3-030-90306-0
isbn_softcover978-3-030-90308-4
isbn_ebook978-3-030-90306-0
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Hamilton’s Principle in Continuum Mechanics影響因子(影響力)




書目名稱Hamilton’s Principle in Continuum Mechanics影響因子(影響力)學(xué)科排名




書目名稱Hamilton’s Principle in Continuum Mechanics網(wǎng)絡(luò)公開度




書目名稱Hamilton’s Principle in Continuum Mechanics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hamilton’s Principle in Continuum Mechanics被引頻次




書目名稱Hamilton’s Principle in Continuum Mechanics被引頻次學(xué)科排名




書目名稱Hamilton’s Principle in Continuum Mechanics年度引用




書目名稱Hamilton’s Principle in Continuum Mechanics年度引用學(xué)科排名




書目名稱Hamilton’s Principle in Continuum Mechanics讀者反饋




書目名稱Hamilton’s Principle in Continuum Mechanics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:19:50 | 只看該作者
https://doi.org/10.1007/978-94-015-1009-7tinuum that does not exhibit microstructural effects is presented. Then two particular theories of materials with microstructure are presented to illustrate the use of Hamilton’s principle to generalize the ordinary theories of fluid and solid mechanics.
板凳
發(fā)表于 2025-3-22 03:20:35 | 只看該作者
地板
發(fā)表于 2025-3-22 06:55:06 | 只看該作者
5#
發(fā)表于 2025-3-22 11:54:15 | 只看該作者
Mechanics of Systems of Particles,n applying Hamilton’s principle to continuum mechanics are quite similar. For this reason, the application of Hamilton’s principle to systems of particles is briefly discussed, providing a simple context in which to introduce the variational ideas underlying Hamilton’s principle as well as the metho
6#
發(fā)表于 2025-3-22 15:28:49 | 只看該作者
7#
發(fā)表于 2025-3-22 17:22:25 | 只看該作者
8#
發(fā)表于 2025-3-23 01:00:06 | 只看該作者
9#
發(fā)表于 2025-3-23 04:19:19 | 只看該作者
10#
發(fā)表于 2025-3-23 06:06:29 | 只看該作者
https://doi.org/10.1057/9781137520920cles is briefly discussed, providing a simple context in which to introduce the variational ideas underlying Hamilton’s principle as well as the method of Lagrange multipliers and the concept of virtual work.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兖州市| 福贡县| 阿拉善左旗| 临江市| 阿图什市| 卫辉市| 闽侯县| 姜堰市| 安图县| 阿克陶县| 洛扎县| 繁峙县| 临猗县| 呼伦贝尔市| 普格县| 兴业县| 峨眉山市| 江阴市| 嘉义市| 麻江县| 许昌县| 惠东县| 佛学| 剑阁县| 岱山县| 南投县| 衡阳市| 阜新市| 珠海市| 宁夏| 襄城县| 正宁县| 宿州市| 油尖旺区| 株洲市| 花莲市| 永嘉县| 南宁市| 棋牌| 泸定县| 交城县|