找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Dynamical Systems; History, Theory, and H. S. Dumas,K. S. Meyer,D. S. Schmidt Conference proceedings 1995 Springer-Verlag New Y

[復(fù)制鏈接]
樓主: cobble
21#
發(fā)表于 2025-3-25 04:31:39 | 只看該作者
22#
發(fā)表于 2025-3-25 11:32:10 | 只看該作者
Factoring the Lunar Problem: Geometry, Dynamics, and Algebra in the Lunar Theory from Kepler to Claiaratus could get top-heavy. Tycho Brahe, for one was bothered by geometrical complication. Here is his theory (Fig. 1.1), developed during the 1590s, for the two main inequalities in the Moon’s longitude.
23#
發(fā)表于 2025-3-25 15:28:50 | 只看該作者
24#
發(fā)表于 2025-3-25 18:11:23 | 只看該作者
25#
發(fā)表于 2025-3-25 23:13:45 | 只看該作者
26#
發(fā)表于 2025-3-26 02:49:40 | 只看該作者
https://doi.org/10.1007/978-90-481-3009-2amical equations, the procedure synchronizes the motions of the perturbed system onto those of the unperturbed part. The method is most useful when the unperturbed part has solutions in non-elementary functions. Applications of the method are described.
27#
發(fā)表于 2025-3-26 06:36:50 | 只看該作者
28#
發(fā)表于 2025-3-26 12:13:10 | 只看該作者
29#
發(fā)表于 2025-3-26 16:12:30 | 只看該作者
https://doi.org/10.1007/978-94-011-9522-5[CL]). In the Poincaré compactification of some .-body problems the critical points which appear there are extremely degenerate. In this paper we focus our attention on generic properties of arbitrary Hamiltonian polynomial vector fields, especially at infinity.
30#
發(fā)表于 2025-3-26 20:45:23 | 只看該作者
https://doi.org/10.1007/978-1-349-19731-6 normal form techniques adapted to a slightly generalized version of the DiPerna-Lions theory of generalized flows for ODEs [5]. By specializing to the case of Hamiltonian vector fields, we obtain an interesting and somewhat surprising result for Hamiltonians of low regularity, as well as a reason for including this article in these proceedings.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武功县| 高雄市| 牙克石市| 策勒县| 佳木斯市| 共和县| 锡林浩特市| 临邑县| 腾冲县| 招远市| 施甸县| 靖边县| 济源市| 盐山县| 汕尾市| 太仆寺旗| 南平市| 田东县| 淳安县| 中江县| 新河县| 阜南县| 花垣县| 游戏| 阳西县| 赤城县| 喀什市| 康定县| 罗田县| 和平区| 克东县| 平度市| 丹寨县| 积石山| 无极县| 潜山县| 桐柏县| 华蓥市| 那曲县| 台中市| 浦北县|