找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Dynamical Systems; History, Theory, and H. S. Dumas,K. S. Meyer,D. S. Schmidt Conference proceedings 1995 Springer-Verlag New Y

[復制鏈接]
樓主: cobble
11#
發(fā)表于 2025-3-23 13:27:38 | 只看該作者
Transverse Homoclinic Connections for Geodesic FlowsGiven a two dimensional Riemannian manifold for which the geodesic flow has a homoclinic (heteroclinic) connection, we show how to make a .. small perturbation of the metric for which the connection becomes transverse. We apply this result to several examples.
12#
發(fā)表于 2025-3-23 15:00:47 | 只看該作者
13#
發(fā)表于 2025-3-23 19:21:30 | 只看該作者
Suspension of Symplectic Twist Maps by HamiltoniansWe extend some results of Moser [17], Bialy and Polterovitch [1], on the suspension of symplectic twist maps by Hamiltonian flows.
14#
發(fā)表于 2025-3-24 00:41:04 | 只看該作者
Analytic Torsion, Flows and FoliationsWe present an overview of the known results in Lefschetz formulas for flows, that is, on the problem of relating the topology of a manifold to the number and nature of periodic orbits of a vector field.
15#
發(fā)表于 2025-3-24 05:49:45 | 只看該作者
The Global Phase Structure of the Three Dimensional Isosceles Three Body Problem with Zero EnergyWe study the global flow defined by the three-dimensional isosceles three-body problem with zero energy. A new set of coordinates and a scaled time are introduced which alow the phase space to be compactified by adding boundary manifolds. Geometric argument gives an almost complete sketch of the global phase portrait of this gravitational system.
16#
發(fā)表于 2025-3-24 09:10:35 | 只看該作者
978-1-4613-8450-2Springer-Verlag New York, Inc. 1995
17#
發(fā)表于 2025-3-24 12:02:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:08:13 | 只看該作者
https://doi.org/10.1007/978-1-4613-8448-9bifurcation; calculus; dynamical systems; hamiltonian system; stability
19#
發(fā)表于 2025-3-24 20:15:24 | 只看該作者
20#
發(fā)表于 2025-3-24 23:40:48 | 只看該作者
https://doi.org/10.1007/978-3-030-65343-9der Waals interaction for . = 0, whose orbit manifold is a 2-dimensional sphere. Complementing the work of Alhassid .. and Ganesan and Lakshmanan, we show that the global flow is characterized by three parametric bifurcations of butterfly type corresponding to the dynamical symmetries of the problem.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 16:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阜城县| 津市市| 巴里| 湖州市| 麦盖提县| 铁力市| 石河子市| 津南区| 舟山市| 花莲市| 黄山市| 大庆市| 栖霞市| 浑源县| 无极县| 永州市| 博野县| 万宁市| 扎兰屯市| 玛沁县| 仙居县| 腾冲县| 饶河县| 云安县| 拉孜县| 长治市| 宁安市| 长岛县| 石城县| 达日县| 青冈县| 垣曲县| 金塔县| 安福县| 文化| 邮箱| 克什克腾旗| 赞皇县| 贵德县| 武平县| 长岛县|