找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Haar Series and Linear Operators; Igor Novikov,Evgenij Semenov Book 1997 Springer Science+Business Media Dordrecht 1997 DEX.Equivalence.Ma

[復(fù)制鏈接]
樓主: ARRAY
21#
發(fā)表于 2025-3-25 06:07:35 | 只看該作者
Economic Remedies to Reduce SmokingThe purpose of this chapter is to describe monotone bases in r.i. spaces. If any contractive projection P satisfying the condition .. = .. is a conditional expectation, then such description can be given in terms of generalized Haar systems. We start in section 10.a with the characterization of r.i. spaces with the above mentioned property.
22#
發(fā)表于 2025-3-25 09:59:31 | 只看該作者
23#
發(fā)表于 2025-3-25 12:36:29 | 只看該作者
24#
發(fā)表于 2025-3-25 18:04:45 | 只看該作者
25#
發(fā)表于 2025-3-25 22:48:10 | 只看該作者
The Economics of Alfred MarshallIf the H.s. is an unconditional basis of an r.i. space ., then the spaces spanned by subsequences of the H.s. are complemented in .. These spaces can be characterized in the following form.
26#
發(fā)表于 2025-3-26 02:17:36 | 只看該作者
https://doi.org/10.1007/978-94-011-2950-3A.M. Olevskii investigated some orthonormal system which is closely connected with the H.s.[212].
27#
發(fā)表于 2025-3-26 04:35:08 | 只看該作者
28#
發(fā)表于 2025-3-26 12:31:28 | 只看該作者
Convergence of Haar Series,One of the main propeties of the H.s. is that it forms a basis in ., .. (1 ≤ . < ∞) and moreover in a separable r.i. space. Any function χ.(.) (. > 1) is discontinuous. Therefore if . ∈ .[0,1], then the convergence ... to . is meant in ...
29#
發(fā)表于 2025-3-26 13:21:40 | 只看該作者
Basis Properties of the Haar System,Theorem 3.2 shows that the H.s. forms a basis in .., 1 ≤ p < ∞. This statement may be generalized.
30#
發(fā)表于 2025-3-26 17:24:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌阳县| 郓城县| 浮山县| 黄龙县| 诸暨市| 肥东县| 龙岩市| 丰台区| 连南| 太白县| 佛山市| 普兰店市| 香港| 岑巩县| 灵璧县| 平武县| 盐山县| 南乐县| 腾冲县| 西和县| 松溪县| 义乌市| 万安县| 陕西省| 禄劝| 穆棱市| 贵溪市| 珠海市| 宁南县| 漾濞| 南平市| 大邑县| 隆回县| 武宣县| 内江市| 南城县| 巴彦县| 沛县| 凤城市| 普陀区| 灵璧县|