找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Haar Series and Linear Operators; Igor Novikov,Evgenij Semenov Book 1997 Springer Science+Business Media Dordrecht 1997 DEX.Equivalence.Ma

[復制鏈接]
樓主: ARRAY
21#
發(fā)表于 2025-3-25 06:07:35 | 只看該作者
Economic Remedies to Reduce SmokingThe purpose of this chapter is to describe monotone bases in r.i. spaces. If any contractive projection P satisfying the condition .. = .. is a conditional expectation, then such description can be given in terms of generalized Haar systems. We start in section 10.a with the characterization of r.i. spaces with the above mentioned property.
22#
發(fā)表于 2025-3-25 09:59:31 | 只看該作者
23#
發(fā)表于 2025-3-25 12:36:29 | 只看該作者
24#
發(fā)表于 2025-3-25 18:04:45 | 只看該作者
25#
發(fā)表于 2025-3-25 22:48:10 | 只看該作者
The Economics of Alfred MarshallIf the H.s. is an unconditional basis of an r.i. space ., then the spaces spanned by subsequences of the H.s. are complemented in .. These spaces can be characterized in the following form.
26#
發(fā)表于 2025-3-26 02:17:36 | 只看該作者
https://doi.org/10.1007/978-94-011-2950-3A.M. Olevskii investigated some orthonormal system which is closely connected with the H.s.[212].
27#
發(fā)表于 2025-3-26 04:35:08 | 只看該作者
28#
發(fā)表于 2025-3-26 12:31:28 | 只看該作者
Convergence of Haar Series,One of the main propeties of the H.s. is that it forms a basis in ., .. (1 ≤ . < ∞) and moreover in a separable r.i. space. Any function χ.(.) (. > 1) is discontinuous. Therefore if . ∈ .[0,1], then the convergence ... to . is meant in ...
29#
發(fā)表于 2025-3-26 13:21:40 | 只看該作者
Basis Properties of the Haar System,Theorem 3.2 shows that the H.s. forms a basis in .., 1 ≤ p < ∞. This statement may be generalized.
30#
發(fā)表于 2025-3-26 17:24:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 10:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
高雄市| 纳雍县| 澄城县| 浑源县| 永德县| 西平县| 镇雄县| 长岛县| 仪陇县| 阳原县| 东宁县| 汾阳市| 金沙县| 乌兰察布市| 沙湾县| 丰顺县| 睢宁县| 巴马| 从化市| 香港 | 白玉县| 固始县| 永年县| 广饶县| 紫阳县| 平泉县| 项城市| 宁国市| 邵东县| 贺州市| 筠连县| 固原市| 海门市| 星座| 浮山县| 汝城县| 西峡县| 松阳县| 西林县| 江陵县| 开化县|