找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Halloween
11#
發(fā)表于 2025-3-23 13:45:54 | 只看該作者
12#
發(fā)表于 2025-3-23 16:01:50 | 只看該作者
13#
發(fā)表于 2025-3-23 21:19:47 | 只看該作者
Riemannian and Pseudo Riemannian GeometryAs explained in the previous chapter we should distinguish terms like topological spaces, differential topology, differential geometry, algebraic topology and algebraic geometry.
14#
發(fā)表于 2025-3-24 01:31:07 | 只看該作者
15#
發(fā)表于 2025-3-24 03:57:12 | 只看該作者
Configuration Space Topology and Topological Conservation LawsWith formal notations on topological spaces, homotopy, homology and cohomology introduced in the first three chapters, we have taken up their applications in Chaps. .–..
16#
發(fā)表于 2025-3-24 09:42:10 | 只看該作者
Spin-Statistics Theorem, Low Dimensional Topology and GeometryWe saw in the previous chapter the role of topology in multiparticle systems of elementary particles and providing explanation for possible statistics.
17#
發(fā)表于 2025-3-24 12:21:49 | 只看該作者
Braid Group, Knots, Three ManifoldsWe introduced braids and their group structure in Chap. .. We briefly recollect here so that we can study how knots in three-dimensional space . arise from these braids.
18#
發(fā)表于 2025-3-24 18:47:47 | 只看該作者
19#
發(fā)表于 2025-3-24 20:49:14 | 只看該作者
3D Gravity and BTZ BlackholeThree-dimensional gravity is an excellent model for understanding several features of topological and quantum aspects of gravity. This is because in three-dimensional gravity we do not have propagating (dynamical) degrees of freedom. But topological aspects provide interesting features. There is one more reason to understand this model.
20#
發(fā)表于 2025-3-24 23:33:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南京市| 灯塔市| 叙永县| 永兴县| 双桥区| 偏关县| 潍坊市| 韶山市| 西林县| 贵州省| 辉县市| 抚远县| 黔江区| 阜平县| 北京市| 张掖市| 沛县| 甘孜| 余江县| 海城市| 林周县| 苍南县| 贵德县| 商洛市| 屯留县| 宾川县| 乌海市| 昌邑市| 石景山区| 旬阳县| 凤山县| 甘孜县| 巴中市| 桃园市| 永德县| 崇信县| 大荔县| 正定县| 枣强县| 明水县| 靖边县|