找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Falter
31#
發(fā)表于 2025-3-27 00:19:56 | 只看該作者
Opportunities in Data Science Educationury skills (Sect.?.), interdisciplinary pedagogy (Sect.?.), and professional development for teachers (Sect.?.). We conclude with an interdisciplinary perspective on the opportunities of data science education (Sect.?.).
32#
發(fā)表于 2025-3-27 02:26:28 | 只看該作者
The Data Science Workflowaspects of the different phases of the workflow: data collection (Sect.?.), data preparation (Sect.?.), exploratory data analysis (Sect.?.), modeling (Sect.?.), and communication and action (Sect.?.). We conclude with an interdisciplinary perspective on the data science workflow (Sect.?.).
33#
發(fā)表于 2025-3-27 06:43:13 | 只看該作者
Machine Learning AlgorithmsSect.?.), linear regression (Sect.?.), logistic regression (Sect.?.), and neural networks (Sect.?.). Finally, we discuss interrelations between the interdisciplinarity of data science and the teaching of ML algorithms (Sect.?.).
34#
發(fā)表于 2025-3-27 10:17:32 | 只看該作者
https://doi.org/10.1057/978-1-137-40354-4ct.?.), model complexity (Sect.?.), overfitting and underfitting (Sect.?.), loss function optimization and the gradient descent algorithm (Sect.?.), and regularization (Sect.?.). We conclude this chapter by emphasizing what ML core concepts should be discussed in the context of the application domain (Sect.?.).
35#
發(fā)表于 2025-3-27 17:10:48 | 只看該作者
Core Concepts of Machine Learningct.?.), model complexity (Sect.?.), overfitting and underfitting (Sect.?.), loss function optimization and the gradient descent algorithm (Sect.?.), and regularization (Sect.?.). We conclude this chapter by emphasizing what ML core concepts should be discussed in the context of the application domain (Sect.?.).
36#
發(fā)表于 2025-3-27 19:36:34 | 只看該作者
https://doi.org/10.1007/978-3-662-04698-2 principles we applied in it (Sect.?.), its structure (Sect.?.), and how it can be used by educators who teach data science in different educational frameworks (Sect.?.). Finally, we present several main kinds of learning environments that are appropriate for teaching and learning data science (Sect.?.).
37#
發(fā)表于 2025-3-28 00:17:22 | 只看該作者
September-November: the Approach of War, (Sect.?.), and data science as a profession (Sect.?.). We conclude by highlighting three main characteristics of data science: interdisciplinarity, learner diversity, and its research-oriented nature (Sect.?.).
38#
發(fā)表于 2025-3-28 03:32:47 | 只看該作者
39#
發(fā)表于 2025-3-28 07:04:57 | 只看該作者
40#
發(fā)表于 2025-3-28 13:49:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 14:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上犹县| 九寨沟县| 仁怀市| 泰宁县| 齐齐哈尔市| 宜州市| 文水县| 革吉县| 内黄县| 依安县| 交城县| 九寨沟县| 汨罗市| 瑞金市| 玉屏| 芷江| 昌邑市| 历史| 邵阳县| 黔江区| 浮梁县| 安泽县| 邵阳县| 绥宁县| 龙川县| 健康| 民县| 凉山| 清涧县| 五台县| 平阴县| 绿春县| 博客| 肇东市| 广东省| 丹寨县| 西青区| 通州市| 沾化县| 鄂托克旗| 田林县|