找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Inspection
11#
發(fā)表于 2025-3-23 11:30:20 | 只看該作者
Introduction,refully distinguish between “data” and “knowledge” in order to obtain clear notions that help us to work out why it is usually not enough to simply collect data and why we have to strive to turn them into knowledge. As an illustration, we consider a well-known example from the history of science. In
12#
發(fā)表于 2025-3-23 14:45:17 | 只看該作者
13#
發(fā)表于 2025-3-23 20:34:09 | 只看該作者
14#
發(fā)表于 2025-3-24 01:59:33 | 只看該作者
Data Understanding,ysis process, but data understanding should not be driven exclusively by the goals and methods to be applied in later steps. Although these requirements should be kept in mind during data understanding, one should approach the data from a neutral point of view. Never trust any data as long as you ha
15#
發(fā)表于 2025-3-24 02:36:55 | 只看該作者
16#
發(fā)表于 2025-3-24 09:05:38 | 只看該作者
Data Preparation,ations. We intend to apply various modeling techniques to extract models from the data. Although we have not yet discussed any modeling technique in greater detail (see Chaps.?7ff), we have already glimpsed at some fundamental techniques and potential pitfalls in the previous chapter. Before we star
17#
發(fā)表于 2025-3-24 14:02:07 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:29 | 只看該作者
Finding Explanations, in order to group similar objects. In this chapter we will discuss methods that address a very different setup: instead of finding structure in a data set, we are now focusing on methods that find explanations for an unknown dependency within the data. Such a search for a dependency usually focuses
19#
發(fā)表于 2025-3-24 21:35:07 | 只看該作者
Finding Predictors,e discussed methods for basically the same purpose, the methods in this chapter yield models that do not help much to explain the data or even dispense with models altogether. Nevertheless, they can be useful, namely if the main goal is good prediction accuracy rather than an intuitive and interpret
20#
發(fā)表于 2025-3-25 01:15:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桦甸市| 丹江口市| 孟村| 钦州市| 蓬安县| 固原市| 田林县| 湖口县| 兴义市| 建阳市| 阿鲁科尔沁旗| 柳州市| 辉南县| 深州市| 个旧市| 甘南县| 邵东县| 沾益县| 吉林省| 屯昌县| 天祝| 邵阳市| 泸西县| 吉安县| 湘阴县| 修文县| 桃园县| 邳州市| 枣阳市| 揭阳市| 堆龙德庆县| 华坪县| 台南市| 贵南县| 怀安县| 通辽市| 固安县| 宣武区| 乡宁县| 海门市| 轮台县|