找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 26993|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:53:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Guide to High Performance Distributed Computing
編輯K.G. Srinivasa,Anil Kumar Muppalla
視頻videohttp://file.papertrans.cn/391/390845/390845.mp4
叢書名稱Computer Communications and Networks
圖書封面Titlebook: ;
出版日期Textbook 2015
版次1
doihttps://doi.org/10.1007/978-3-319-13497-0
isbn_softcover978-3-319-38347-7
isbn_ebook978-3-319-13497-0Series ISSN 1617-7975 Series E-ISSN 2197-8433
issn_series 1617-7975
The information of publication is updating

書目名稱Guide to High Performance Distributed Computing影響因子(影響力)




書目名稱Guide to High Performance Distributed Computing影響因子(影響力)學(xué)科排名




書目名稱Guide to High Performance Distributed Computing網(wǎng)絡(luò)公開度




書目名稱Guide to High Performance Distributed Computing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Guide to High Performance Distributed Computing被引頻次




書目名稱Guide to High Performance Distributed Computing被引頻次學(xué)科排名




書目名稱Guide to High Performance Distributed Computing年度引用




書目名稱Guide to High Performance Distributed Computing年度引用學(xué)科排名




書目名稱Guide to High Performance Distributed Computing讀者反饋




書目名稱Guide to High Performance Distributed Computing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:38:30 | 只看該作者
Getting Started with Hadoop is prone to failures [2]. While Hadoop can be run on a single machine the true power of Hadoop is realized in its ability to scale-up to thousands of computers, each with several processor cores. It also distributes large amounts of work across the clusters efficiently [1].
板凳
發(fā)表于 2025-3-22 03:13:28 | 只看該作者
https://doi.org/10.1057/9780230234208h a set of operations. This model enables the system to schedule and react to faults better without any user intervention. While this model can be applied to a lot applications, there are problems that cannot be solved efficiently by acyclic data flows.
地板
發(fā)表于 2025-3-22 05:43:46 | 只看該作者
5#
發(fā)表于 2025-3-22 08:55:33 | 只看該作者
6#
發(fā)表于 2025-3-22 14:15:03 | 只看該作者
Case Study II: Data Classification using Scalding and Sparkght be interested in determining the ripeness of the fruit based on a vector of size, weight, spectral data. An electrical engineer may want to find dependency between voltage and current. A search engine might want to a vector of counts which describe the frequency of words.
7#
發(fā)表于 2025-3-22 19:16:52 | 只看該作者
Introductioniscusses briefly on the different types of systems shedding light on popular architectures used in successful distributed system arrangements. It further goes on to identify several challenges and hints at several research areas. The chapters ends with trends and examples where distributed systems h
8#
發(fā)表于 2025-3-22 22:53:02 | 只看該作者
Getting Started with Hadoopructs/models. It is designed to scale-up from a single server to thousands of nodes. It is designed to detect failures at the application level rather than rely on hardware for high-availability thereby delivering a highly available service on top of cluster of commodity hardware nodes each of which
9#
發(fā)表于 2025-3-23 02:25:30 | 只看該作者
Getting Started with Sparks. This is enabled by software systems that provide locality-aware scheduling, fault tolerance, and load balancing. MapReduce [1] has become the front runner in pioneering this model, while systems like Map-Reduce-Merge [2] and Dryad [3] have generalized different data flow types. These systems are
10#
發(fā)表于 2025-3-23 07:45:03 | 只看該作者
Case Study II: Data Classification using Scalding and Sparkechniques can be applied to similar data types. For example, Natural Language Processing and Bio-informatics use very similar tools for strings for natural language text and DNA sequences. The most basic type of data entities are Vectors . For example, an insurance corporation may want a vector of p
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安国市| 马公市| 乐山市| 灵璧县| 余庆县| 洛隆县| 崇义县| 新巴尔虎左旗| 蕉岭县| 兴宁市| 山阳县| 汕头市| 长子县| 钦州市| 吉木萨尔县| 崇明县| 淳安县| 天柱县| 怀远县| 昌都县| 凌源市| 平遥县| 嘉禾县| 新密市| 交城县| 漯河市| 广东省| 绥中县| 曲水县| 寿宁县| 板桥市| 固镇县| 无锡市| 普兰县| 巴马| 新河县| 阿荣旗| 太和县| 贵州省| 宣武区| 巴中市|