找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 10448|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:12:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Guide to Convolutional Neural Networks
編輯Hamed Habibi Aghdam,Elnaz Jahani Heravi
視頻videohttp://file.papertrans.cn/391/390813/390813.mp4
圖書(shū)封面Titlebook: ;
出版日期Book 2017
版次1
doihttps://doi.org/10.1007/978-3-319-57550-6
isbn_softcover978-3-319-86190-6
isbn_ebook978-3-319-57550-6
The information of publication is updating

書(shū)目名稱(chēng)Guide to Convolutional Neural Networks影響因子(影響力)




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks被引頻次




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks被引頻次學(xué)科排名




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks年度引用




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks年度引用學(xué)科排名




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks讀者反饋




書(shū)目名稱(chēng)Guide to Convolutional Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:46:11 | 只看該作者
Convolutional Neural Networks,d some of the libraries that are commonly used for training deep networks. In addition, common metrics (i.e., classification accuracy, confusion matrix, precision, recall, and F1 score) for evaluating classification models were mentioned together with their advantages and disadvantages. Two importan
板凳
發(fā)表于 2025-3-22 03:18:41 | 只看該作者
地板
發(fā)表于 2025-3-22 08:32:24 | 只看該作者
Visualizing Neural Networks,ion was regularized using . norm of the image. In the second method, gradient of a particular neuron was computed with respect to the input image and it is illustrated by computing its magnitude. The third method formulated the visualizing problem as an image reconstruction problem. To be more speci
5#
發(fā)表于 2025-3-22 12:24:12 | 只看該作者
6#
發(fā)表于 2025-3-22 13:55:28 | 只看該作者
7#
發(fā)表于 2025-3-22 19:57:19 | 只看該作者
Small States and the European Migrant Crisis can be used for creating ensemble of models. Then, a method based on optimal subset selection using genetic algorithms were discussed. This way, we create ensembles with minimum number of models that together they increase the classification accuracy. After that, we showed how to interpret and anal
8#
發(fā)表于 2025-3-22 23:21:26 | 只看該作者
https://doi.org/10.1007/978-3-642-20766-2ion was regularized using . norm of the image. In the second method, gradient of a particular neuron was computed with respect to the input image and it is illustrated by computing its magnitude. The third method formulated the visualizing problem as an image reconstruction problem. To be more speci
9#
發(fā)表于 2025-3-23 03:24:03 | 只看該作者
Traffic Sign Detection and Recognition,work in the field of traffic sign detection and classification is also reviewed. We mentioned several methods based on hand-crafted features and then introduced the idea behind feature learning. Then, we explained some of the works based on convolutional neural networks.
10#
發(fā)表于 2025-3-23 05:42:01 | 只看該作者
Caffe Library,lications. In this chapter, we explained how to design and train neural networks using the Caffe library. Moreover, the Python interface of Caffe was discussed using real examples. Then, we mentioned how to develop new layers in Python and use them in neural networks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
京山县| 东台市| 禹州市| 开阳县| 敦化市| 革吉县| 井研县| 海城市| 瑞丽市| 南投市| 昌黎县| 文山县| 平潭县| 固安县| 恩施市| 阿克苏市| 印江| 贵港市| 岳西县| 紫阳县| 阿拉善盟| 剑川县| 大名县| 瑞丽市| 乌鲁木齐市| 彰化县| 商河县| 区。| 五常市| 峨边| 漳州市| 淮北市| 昂仁县| 岚皋县| 子洲县| 吉木萨尔县| 三门县| 邵东县| 古蔺县| 芒康县| 东兰县|