找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 叛亂分子
31#
發(fā)表于 2025-3-27 00:37:36 | 只看該作者
Coping with Plasma Charging Damage,etical models to describe thin film growth by Molecular Beam Epitaxy. A number of groups . have proposed that the statistical properties of MBE growth are given by the fourth order continuum equation..where . is the height of the surface and . is a noise source with correlations
32#
發(fā)表于 2025-3-27 02:02:51 | 只看該作者
33#
發(fā)表于 2025-3-27 09:19:26 | 只看該作者
Stochastic Processes in a Plasma,their spatial and temporal behaviour. Similar scaling behaviour has been known to exist in fully developed turbulent flows in both the inertial and dissipative regimes for well over half a century.. These diverse phenomena are united by the fact that they are all describable by a special class of non-linear partial differial equations.
34#
發(fā)表于 2025-3-27 12:50:15 | 只看該作者
https://doi.org/10.1007/978-3-319-47310-9imposed thermal gradient), the solids thus obtained are often found to exhibit quasi periodic composition modulations. Since we are considering here soluble species #, these inhomogeneities are necessarily due to the dynamics of growth of the solid from its melt. We can distinguish, among these situations, two main cases :
35#
發(fā)表于 2025-3-27 16:13:52 | 只看該作者
36#
發(fā)表于 2025-3-27 18:13:00 | 只看該作者
MBE Growth and Surface Diffusionetical models to describe thin film growth by Molecular Beam Epitaxy. A number of groups . have proposed that the statistical properties of MBE growth are given by the fourth order continuum equation..where . is the height of the surface and . is a noise source with correlations
37#
發(fā)表于 2025-3-27 21:56:37 | 只看該作者
Growth in Systems with Quenched Disorderges induced by disorder: magnetic domain growth. and immiscible fluid invasion.. In each case there are two domains which have different spin orientations or fluid composition. An applied force, magnetic field or pressure, favors growth of one domain.
38#
發(fā)表于 2025-3-28 04:02:16 | 只看該作者
39#
發(fā)表于 2025-3-28 08:47:30 | 只看該作者
40#
發(fā)表于 2025-3-28 13:21:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁国市| 大安市| 凌海市| 安龙县| 泊头市| 香河县| 平武县| 崇明县| 蒲江县| 平泉县| 古田县| 汉沽区| 平远县| 响水县| 汕头市| 江城| 桓仁| 沂源县| 永川市| 鄂托克旗| 军事| 新乡县| 大方县| 定安县| 双辽市| 万年县| 垦利县| 怀宁县| 濮阳市| 淮滨县| 兴义市| 秭归县| 芦山县| 荔波县| 宁晋县| 交口县| 河曲县| 苏尼特右旗| 隆回县| 和静县| 望谟县|