找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Conformist
11#
發(fā)表于 2025-3-23 11:16:57 | 只看該作者
https://doi.org/10.1007/978-1-4684-3345-6Matrix theory is deeply embedded in the foundations of algebra. The idea of a matrix is very simple, and useful examples and ideas present themselves immediately, as we shall soon see.
12#
發(fā)表于 2025-3-23 15:24:27 | 只看該作者
13#
發(fā)表于 2025-3-23 21:07:32 | 只看該作者
Unified Neutron Transport TheoryA vector space is a set . whose elements, called vectors, can be added and subtracted: in fact, a vector space is an abelian group under addition.
14#
發(fā)表于 2025-3-23 23:37:30 | 只看該作者
15#
發(fā)表于 2025-3-24 04:18:05 | 只看該作者
16#
發(fā)表于 2025-3-24 06:52:07 | 只看該作者
L. F. Myzenkova,V. V. Baron,E. M. SavitskiiOur treatment of matrix theory and the theory of finite-dimensional vector spaces and their linear mappings is finished, and we now turn to the theory of groups.
17#
發(fā)表于 2025-3-24 12:17:52 | 只看該作者
18#
發(fā)表于 2025-3-24 16:58:43 | 只看該作者
19#
發(fā)表于 2025-3-24 19:09:47 | 只看該作者
Groups and Fields: The Two Fundamental Notions of Algebra,Algebra is the mathematical discipline that arose from the problem of solving equations. If one starts with the integers ., one knows that every equation ., where . and . are integers, has a unique solution. However, the equation . does not necessarily have a solution in ., or it might have infinitely many solutions (take .).
20#
發(fā)表于 2025-3-25 01:35:16 | 只看該作者
Matrices,Matrix theory is deeply embedded in the foundations of algebra. The idea of a matrix is very simple, and useful examples and ideas present themselves immediately, as we shall soon see.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新宾| 宜兴市| 鄱阳县| 沽源县| 台南市| 山丹县| 克什克腾旗| 锡林郭勒盟| 河津市| 阿荣旗| 丽江市| 镇雄县| 永城市| 全椒县| 扎鲁特旗| 桓台县| 荆州市| 靖宇县| 香格里拉县| 纳雍县| 都昌县| 芷江| 辽阳县| 伊宁市| 怀化市| 锡林郭勒盟| 司法| 龙山县| 若尔盖县| 龙井市| 酒泉市| 准格尔旗| 五指山市| 霍林郭勒市| 丰原市| 濉溪县| 昌平区| 黎川县| 安岳县| 卢龙县| 福州市|