找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Blandishment
11#
發(fā)表于 2025-3-23 12:41:12 | 只看該作者
Non-orientable and orientable regular maps,ble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
12#
發(fā)表于 2025-3-23 17:52:47 | 只看該作者
13#
發(fā)表于 2025-3-23 21:40:14 | 只看該作者
14#
發(fā)表于 2025-3-24 00:06:18 | 只看該作者
Albrecht Neftel,Andreas Sigg,Peter Jacobble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
15#
發(fā)表于 2025-3-24 04:41:59 | 只看該作者
16#
發(fā)表于 2025-3-24 07:07:30 | 只看該作者
17#
發(fā)表于 2025-3-24 11:50:44 | 只看該作者
A. Iqbal,B. Medinger,R. B. McKayis transcendental as an element of .. Unlike the groupoid cases ([1], [5]) and the case when ..+..+···+..=1 ([2]), the basis problems for the equational theories of the above .-groupoids or the above classes are not so simple.
18#
發(fā)表于 2025-3-24 15:07:01 | 只看該作者
On n-groupoids defined on fields,is transcendental as an element of .. Unlike the groupoid cases ([1], [5]) and the case when ..+..+···+..=1 ([2]), the basis problems for the equational theories of the above .-groupoids or the above classes are not so simple.
19#
發(fā)表于 2025-3-24 22:02:20 | 只看該作者
Groups with many elliptic subgroups, G be a finitely generated solvable group. It is shown that . has many elliptic pairs of subgroups if and only if . is finite-by-nilpotent. It is also shown that if . is finitely generated, torsion-free and residually finite .-group, for some prime ., then . has many elliptic pairs of subgroups if and only if . is nilpotent.
20#
發(fā)表于 2025-3-24 23:37:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
介休市| 天水市| 辽中县| 定结县| 通榆县| 襄城县| 青川县| 万荣县| 三亚市| 茶陵县| 商都县| 陆河县| 石狮市| 乡宁县| 温泉县| 枣阳市| 遵化市| 肇庆市| 阳高县| 河南省| 大宁县| 内丘县| 徐州市| 临沧市| 东乌珠穆沁旗| 承德市| 沧源| 大同市| 集贤县| 耒阳市| 四川省| 赞皇县| 启东市| 伊川县| 潜江市| 云龙县| 基隆市| 武邑县| 阿拉善右旗| 益阳市| 永康市|