找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: irritants
21#
發(fā)表于 2025-3-25 04:33:18 | 只看該作者
22#
發(fā)表于 2025-3-25 11:18:12 | 只看該作者
23#
發(fā)表于 2025-3-25 13:00:33 | 只看該作者
24#
發(fā)表于 2025-3-25 17:26:15 | 只看該作者
25#
發(fā)表于 2025-3-25 20:19:44 | 只看該作者
Perspectives of Photoemission Studies,We describe some recent results concerning regular orbits of quasisimple groups in coprime representations, and discuss an application to the .(.)-problem in modular representation theory.
26#
發(fā)表于 2025-3-26 00:22:06 | 只看該作者
27#
發(fā)表于 2025-3-26 06:14:29 | 只看該作者
Photoelectronic Imaging DevicesIn this note we discuss some recent results on the subgroup structure of exceptional groups obtained jointly with Martin Liebeck and some related projects in progress.
28#
發(fā)表于 2025-3-26 11:09:01 | 只看該作者
Analoge Informationsverarbeitung,A survey is given on embeddings in finite projective spaces of generalized polygons, polar spaces, partial quadrangles, partial geometries, semipartial geometries, dual semipartialgeometries and (0, α)-geometries.
29#
發(fā)表于 2025-3-26 14:46:34 | 只看該作者
Geschichtliche Entwicklung des Verfahrens,We give a geometric characterization of two classes of geometries related to the spin representation of the groups of type ... These geometries appear as quotient geometries of point-line spaces obtained from an ..-building by removing a geometric hyperplane.
30#
發(fā)表于 2025-3-26 19:54:03 | 只看該作者
The Non-canonical Gluings of two Affine Spaces,In this paper we determine the flag-transitive non-canonical gluings of two isomorphic desarguesian affine spaces. It turns out that there are fifteen sporadic examples and two infinite series. Moreover, we determine the universal covers of the fifteen sporadic gluings and of the canonical gluing.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂托克旗| 淳化县| 阿克苏市| 长春市| 西吉县| 日土县| 固始县| 舞钢市| 中阳县| 桐梓县| 南开区| 楚雄市| 通河县| 清河县| 罗江县| 务川| 金坛市| 志丹县| 霍林郭勒市| 克拉玛依市| 青阳县| 沧源| 临汾市| 蒙阴县| 贵州省| 神池县| 大冶市| 会理县| 吕梁市| 茶陵县| 日土县| 元朗区| 定兴县| 饶河县| 丰城市| 英德市| 防城港市| 塘沽区| 房产| 区。| 开阳县|