找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: fitful
11#
發(fā)表于 2025-3-23 11:15:46 | 只看該作者
12#
發(fā)表于 2025-3-23 17:08:43 | 只看該作者
13#
發(fā)表于 2025-3-23 20:37:56 | 只看該作者
Spectral Theory of the Laplace Operator for Cocompact Groups,is a discrete cocompact group. We already know from the preceding Chapter that —Δ is essentially self-adjoint and positive on the subspace . ? L. (.IH) consisting of all ..-functions . ? ..(.IH) such that Δ. ∈ .. (.IH) . This means that the closure of the graph of Δ in .. (.IH) × .. (.IH) is the graph of a self-adjoint linear operator .
14#
發(fā)表于 2025-3-23 23:07:11 | 只看該作者
15#
發(fā)表于 2025-3-24 05:31:06 | 只看該作者
16#
發(fā)表于 2025-3-24 08:10:08 | 只看該作者
Membrane Models for Circadian Rhythms,nstein series of general cofinite groups by direct number theoretic methods. We shall for example relate the determinant of the scattering matrix to the zeta function of the Hilbert class field of . The control we have over the Eisenstein series will also in turn imply many interesting number theoretic results.
17#
發(fā)表于 2025-3-24 12:44:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:47:05 | 只看該作者
Eisenstein Series for PSL(2) over Imaginary Quadratic Integers,nstein series of general cofinite groups by direct number theoretic methods. We shall for example relate the determinant of the scattering matrix to the zeta function of the Hilbert class field of . The control we have over the Eisenstein series will also in turn imply many interesting number theoretic results.
19#
發(fā)表于 2025-3-24 20:46:29 | 只看該作者
Integral Binary Hermitian Forms,(1915), (1919a)—(1919e). It contains an interesting error, we correct it in Section 9.6. We also develop a theory of representation numbers of binary hermitian forms which is analogous to the theory of binary quadratic forms as in Landau (1927).
20#
發(fā)表于 2025-3-24 23:20:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 17:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双城市| 新巴尔虎右旗| 阿坝县| 衢州市| 荥阳市| 富源县| 肥乡县| 寿阳县| 上饶县| 会东县| 偃师市| 若羌县| 灯塔市| 彰武县| 大埔县| 莱阳市| 泰来县| 文水县| 民勤县| 鸡西市| 洞口县| 淮北市| 哈密市| 凤庆县| 镇宁| 五大连池市| 余姚市| 万州区| 清苑县| 凭祥市| 新竹市| 五莲县| 广元市| 德庆县| 桃园县| 宁夏| 睢宁县| 交城县| 海晏县| 顺义区| 体育|