找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 48736|回復(fù): 38
樓主
發(fā)表于 2025-3-21 16:36:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems
編輯A. N. Leznov,M. V. Saveliev
視頻videohttp://file.papertrans.cn/389/388970/388970.mp4
叢書名稱Progress in Mathematical Physics
圖書封面Titlebook: ;
出版日期Book 1992
版次1
doihttps://doi.org/10.1007/978-3-0348-8638-3
isbn_softcover978-3-0348-9709-9
isbn_ebook978-3-0348-8638-3Series ISSN 1544-9998 Series E-ISSN 2197-1846
issn_series 1544-9998
The information of publication is updating

書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems影響因子(影響力)




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems影響因子(影響力)學(xué)科排名




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems網(wǎng)絡(luò)公開度




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems被引頻次




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems被引頻次學(xué)科排名




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems年度引用




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems年度引用學(xué)科排名




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems讀者反饋




書目名稱Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:35:41 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:05:59 | 只看該作者
地板
發(fā)表于 2025-3-22 04:45:24 | 只看該作者
Representations of complex semisimple Lie groups and their real forms,All the Lie algebras and Lie groups considered in this chapter are finite-dimensional; sometimes without mentioning this specifically we confine ourselves to a reductive Lie group, i.e., to a direct product of a simple group by a 1-dimensional center.
5#
發(fā)表于 2025-3-22 12:32:41 | 只看該作者
Integration of nonlinear dynamical systems associated with finite-dimensional Lie algebras,In this chapter we will explicitly construct general solutions for a number of concrete two-dimensional classical nonlinear systems of the type (3.1.4) associated with finite-dimensional Lie algebras. Moreover, in the cases where the one-dimensional (or parametric) solutions are important in applications we perform the necessary reduction.
6#
發(fā)表于 2025-3-22 14:51:46 | 只看該作者
7#
發(fā)表于 2025-3-22 17:28:47 | 只看該作者
Internal symmetries of integrable dynamical systems, description of all their gradings. Therefore, though we can describe explicitly via the general construction the group element uniquely determining the corresponding solutions we cannot describe in terms of a Lie group or its Lie algebra a compact form of the equations themselves.
8#
發(fā)表于 2025-3-22 23:52:28 | 只看該作者
Background of the theory of Lie algebras and Lie groups and their representations,text which describes a group method for integrating a broad class of nonlinear equations of theoretical and mathematical physics. We refer the reader to excellent monographs in this area of mathematics for a deeper and more detailed knowledge (see, e.g., [12, 27, 35, 36, 51, 95, 99, 101, 112–115]).
9#
發(fā)表于 2025-3-23 01:21:38 | 只看該作者
10#
發(fā)表于 2025-3-23 09:12:16 | 只看該作者
Scalar Lax-pairs and soliton solutions of the generalized periodic Toda lattice,ns considerably and, moreover, in principle enables one to perform them. The approach suggested in what follows is invariant with respect to a concrete representation of the algebra of internal symmetries and appeals directly to the properties of the algebra.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳城县| 岳阳县| 彰化县| 都昌县| 广宗县| 眉山市| 南郑县| 宝丰县| 五常市| 石家庄市| 景谷| 丰顺县| 双城市| 岳池县| 北安市| 都匀市| 铜山县| 通化县| 通海县| 乌审旗| 盈江县| 五台县| 区。| 永泰县| 曲麻莱县| 邵阳县| 青海省| 南岸区| 财经| 临海市| 陆川县| 克什克腾旗| 浦江县| 光泽县| 淮安市| 桐庐县| 和静县| 阿合奇县| 新余市| 安图县| 淮滨县|