找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: informed
11#
發(fā)表于 2025-3-23 10:15:42 | 只看該作者
Hypercentral Groups and Rings,group ring ... Our main aim is to prove Roseblade’s theorems that .. is a hypercentral ring if and only if . is a hypercentral group and that .. is a polycentral ring if and only if . is a finitely generated nilpotent group. We must start by explaining these terms.
12#
發(fā)表于 2025-3-23 15:35:41 | 只看該作者
Groups Acting on Finitely Generated Commutative Rings,ated by the image of?.. Then . is a finitely generated commutative ring and . acts on . by conjugation and normalizes the image of?.. We wish to work by induction. It is not sufficient to know about the group rings .(./.).../(.?1).. of ./. and .. of?., say by induction on the Hirsch number. We also
13#
發(fā)表于 2025-3-23 21:58:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:10:07 | 只看該作者
15#
發(fā)表于 2025-3-24 06:14:34 | 只看該作者
16#
發(fā)表于 2025-3-24 07:39:18 | 只看該作者
Phase-Transfer Catalysis: Fundamentals II,..All our rings will have an identity and all our modules will be unital. Our modules will sometimes be right, sometimes be left and sometimes have actions on both sides (e.g. bimodules). The following is an analogue of?2.3.
17#
發(fā)表于 2025-3-24 14:16:32 | 只看該作者
18#
發(fā)表于 2025-3-24 18:19:01 | 只看該作者
19#
發(fā)表于 2025-3-24 21:24:31 | 只看該作者
The Structure of Modules over Polycyclic Groups,In many ways this chapter is the culmination of much of the work we have done in Chaps.?6, 7 and?8. We are especially interested here in the structure of a finitely generated module over a polycyclic group. We then use this information to prove that a finitely generated abelian-by-polycyclic-by-finite group is residually finite.
20#
發(fā)表于 2025-3-25 00:27:50 | 只看該作者
Gerd Neumann,Axel Sch?fer,Werner Mendlinggroup ring ... Our main aim is to prove Roseblade’s theorems that .. is a hypercentral ring if and only if . is a hypercentral group and that .. is a polycentral ring if and only if . is a finitely generated nilpotent group. We must start by explaining these terms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高雄县| 鹿泉市| 莲花县| 金秀| 甘谷县| 蓝山县| 仁化县| 莱州市| 大足县| 天峻县| 宜昌市| 本溪市| 广西| 虞城县| 巴彦淖尔市| 阳谷县| 吉林省| 九江市| 莒南县| 杭锦旗| 永福县| 白城市| 金沙县| 肃宁县| 南城县| 刚察县| 栖霞市| 东乡县| 呼玛县| 准格尔旗| 富顺县| 阿勒泰市| 吉安县| 正宁县| 宿松县| 舒城县| 揭西县| 前郭尔| 历史| 胶南市| 沂南县|