找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: informed
11#
發(fā)表于 2025-3-23 10:15:42 | 只看該作者
Hypercentral Groups and Rings,group ring ... Our main aim is to prove Roseblade’s theorems that .. is a hypercentral ring if and only if . is a hypercentral group and that .. is a polycentral ring if and only if . is a finitely generated nilpotent group. We must start by explaining these terms.
12#
發(fā)表于 2025-3-23 15:35:41 | 只看該作者
Groups Acting on Finitely Generated Commutative Rings,ated by the image of?.. Then . is a finitely generated commutative ring and . acts on . by conjugation and normalizes the image of?.. We wish to work by induction. It is not sufficient to know about the group rings .(./.).../(.?1).. of ./. and .. of?., say by induction on the Hirsch number. We also
13#
發(fā)表于 2025-3-23 21:58:16 | 只看該作者
14#
發(fā)表于 2025-3-24 01:10:07 | 只看該作者
15#
發(fā)表于 2025-3-24 06:14:34 | 只看該作者
16#
發(fā)表于 2025-3-24 07:39:18 | 只看該作者
Phase-Transfer Catalysis: Fundamentals II,..All our rings will have an identity and all our modules will be unital. Our modules will sometimes be right, sometimes be left and sometimes have actions on both sides (e.g. bimodules). The following is an analogue of?2.3.
17#
發(fā)表于 2025-3-24 14:16:32 | 只看該作者
18#
發(fā)表于 2025-3-24 18:19:01 | 只看該作者
19#
發(fā)表于 2025-3-24 21:24:31 | 只看該作者
The Structure of Modules over Polycyclic Groups,In many ways this chapter is the culmination of much of the work we have done in Chaps.?6, 7 and?8. We are especially interested here in the structure of a finitely generated module over a polycyclic group. We then use this information to prove that a finitely generated abelian-by-polycyclic-by-finite group is residually finite.
20#
發(fā)表于 2025-3-25 00:27:50 | 只看該作者
Gerd Neumann,Axel Sch?fer,Werner Mendlinggroup ring ... Our main aim is to prove Roseblade’s theorems that .. is a hypercentral ring if and only if . is a hypercentral group and that .. is a polycentral ring if and only if . is a finitely generated nilpotent group. We must start by explaining these terms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
留坝县| 吴堡县| 谷城县| 都兰县| 金门县| 宁德市| 英超| 万安县| 荣昌县| 大荔县| 额济纳旗| 永济市| 瑞昌市| 灵台县| 上杭县| 古田县| 鹿邑县| 玉田县| 建平县| 瑞昌市| 鄱阳县| 稻城县| 建水县| 巨鹿县| 石家庄市| 淮阳县| 武义县| 建德市| 罗山县| 宜黄县| 门头沟区| 济南市| 积石山| 九台市| 台安县| 宁国市| 准格尔旗| 兴和县| 汉沽区| 滨州市| 大洼县|