找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: fundoplication
11#
發(fā)表于 2025-3-23 11:24:07 | 只看該作者
12#
發(fā)表于 2025-3-23 16:37:13 | 只看該作者
13#
發(fā)表于 2025-3-23 18:39:12 | 只看該作者
Duality theorems in conformal geometry,For conformally flat Riemannian manifolds of dimension n ≥ 3 ,we describe an explicit resolution of the sheaf Θ. of conformal Killing vector fields which is formally self-adjoint, and we deduce a duality theorem for the cohomology of X with values inΘ..
14#
發(fā)表于 2025-3-24 01:29:34 | 只看該作者
15#
發(fā)表于 2025-3-24 04:12:36 | 只看該作者
The DeSitter symmetry of the Dirac equation,The SO(4,1) symmetry of the Dirac equation is constructed. It is realized on the full space of solutions of the Dirac equation. Generalizations and possible physical implications are noted.
16#
發(fā)表于 2025-3-24 07:49:51 | 只看該作者
17#
發(fā)表于 2025-3-24 11:19:26 | 只看該作者
A new look at group orthogonality relations,Group orthogonality relations are presented in various coordinate-free, and possibly new, guises; it is . assumed that the ground field is algebraically closed. One of the more unlikely guises is used to give a basis-free proof of the “generalized Frobenius-Schur criterion” for the Wigner type of a corepresentation.
18#
發(fā)表于 2025-3-24 16:11:48 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:29 | 只看該作者
,The invariants of the nondegenerate representations of the group of the pseudo — orthogonal matriceThe invariants of the nondegenerate representations of the group of pseudo-orthogonal matrices SO(p,l) are constructed.
20#
發(fā)表于 2025-3-25 02:07:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 17:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潮州市| 西乌珠穆沁旗| 武清区| 黎川县| 西乌珠穆沁旗| 丹阳市| 大宁县| 梅州市| 福鼎市| 皋兰县| 河池市| 新绛县| 元江| 阆中市| 友谊县| 肥乡县| 铜鼓县| 太白县| 武强县| 南澳县| 会东县| 甘孜| 五河县| 黄冈市| 万盛区| 油尖旺区| 汉川市| 扶风县| 贵港市| 罗甸县| 吴桥县| 通化市| 邹平县| 舞阳县| 于都县| 建宁县| 哈密市| 苍梧县| 仲巴县| 曲水县| 杭州市|