找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 方面
31#
發(fā)表于 2025-3-26 21:42:21 | 只看該作者
32#
發(fā)表于 2025-3-27 02:23:36 | 只看該作者
Global unitsorders. These Picard-groups are invariant under Morita equivalence. There is a map from the automorphism group of orders to their Picard group. The kernel of this map is the group of inner automorphisms.
33#
發(fā)表于 2025-3-27 08:07:42 | 只看該作者
34#
發(fā)表于 2025-3-27 12:54:12 | 只看該作者
35#
發(fā)表于 2025-3-27 15:48:03 | 只看該作者
36#
發(fā)表于 2025-3-27 21:38:31 | 只看該作者
Global unitsorders. These Picard-groups are invariant under Morita equivalence. There is a map from the automorphism group of orders to their Picard group. The kernel of this map is the group of inner automorphisms.
37#
發(fā)表于 2025-3-27 22:37:39 | 只看該作者
Introduction and Review of the Tame Case group Γ, and if .are the rings of algebraic integers in . and . respectively, then what can be said about .as a Γ-module? A complete answer to this would be a description of .as a module over the group ring ., but since in general . need not be free over ., it is more fruitful to restrict scalars a
38#
發(fā)表于 2025-3-28 02:49:55 | 只看該作者
Maria Noonan,Owen Doody,Julie Jomeenbehaviour of corresponding class sums under powers, and collect properties of a finite group determined by its character table. The consequences with respect to the isomorphism problem are the content of the following summarizing result.
39#
發(fā)表于 2025-3-28 07:15:01 | 只看該作者
40#
發(fā)表于 2025-3-28 14:27:02 | 只看該作者
Matshidiso Joyce Taole,Linley Cornishorders. These Picard-groups are invariant under Morita equivalence. There is a map from the automorphism group of orders to their Picard group. The kernel of this map is the group of inner automorphisms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
筠连县| 合水县| 泰州市| 海淀区| 乌审旗| 堆龙德庆县| 黑龙江省| 桓台县| 丹东市| 民勤县| 江口县| 阳新县| 巩义市| 界首市| 特克斯县| 白朗县| 宜春市| 富蕴县| 宁化县| 边坝县| 阜新市| 长汀县| 高要市| 玉屏| 安达市| 广东省| 延川县| 上栗县| 应城市| 望谟县| 长宁县| 黄梅县| 平原县| 什邡市| 沭阳县| 武宣县| 陇川县| 清水县| 佛山市| 五华县| 长汀县|