找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Taylor
11#
發(fā)表于 2025-3-23 12:46:26 | 只看該作者
12#
發(fā)表于 2025-3-23 16:21:30 | 只看該作者
The Ascription of Intentionality,3,4,5], fine structure analysis of group actions on injective semi-finite factors came into the theory of operator algebras. V. Jones completed a classification of actions of finite groups on an injective II.-factor in his thesis, [13]. A. Ocneanu further supplied an important technical tool, called
13#
發(fā)表于 2025-3-23 18:55:25 | 只看該作者
Perspectives on Individual Differencespresentation ., decompose .) can be considerably harder. For instance, if G is a semisimple Lie group andΓ is a discrete, cocompact subgroup, then the quasi-regular representation of G on L.(ΓG) is known to be a direct sum of irreducibles, each occurring with finite multiplicity, but little is known about which irreducibles appear. (See ↑l6←.)
14#
發(fā)表于 2025-3-24 01:23:14 | 只看該作者
15#
發(fā)表于 2025-3-24 05:22:32 | 只看該作者
16#
發(fā)表于 2025-3-24 09:09:10 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:06 | 只看該作者
Nato Challenges of Modern Society in a well-defined sense explained below. The description relies heavily on the Mackey theory of induced representations, and on the theory of the oscillator representation. This paper is essentially a continuation of ↑H←. Results similar to those described here are valid for other classical Lie groups, and for classical groups over p-adic fields.
18#
發(fā)表于 2025-3-24 15:19:49 | 只看該作者
19#
發(fā)表于 2025-3-24 20:25:55 | 只看該作者
20#
發(fā)表于 2025-3-25 01:19:44 | 只看該作者
Some Homotopy and Shape Calculations for C*-Algbbras,nd under favorable circumstances, any two systems (1.1) with limits isomorphic to A must determine isomorphic diagrams (1.2). In that case the uniquely determined isomorphism class of (1.2) is called the . of A.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
崇义县| 吴川市| 富源县| 探索| 德格县| 潞西市| 静宁县| 洛扎县| 桂林市| 松潘县| 友谊县| 子长县| 合山市| 平湖市| 峨眉山市| 卢氏县| 上高县| 阿拉尔市| 丹巴县| 泾源县| 嘉定区| 滕州市| 探索| 吴堡县| 延长县| 安顺市| 吉木乃县| 荣昌县| 福建省| 河源市| 盐津县| 东丰县| 怀宁县| 进贤县| 明光市| 万载县| 淮南市| 绩溪县| 巴林右旗| 黄浦区| 左云县|