找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 偏差
21#
發(fā)表于 2025-3-25 07:10:11 | 只看該作者
Application to Physical Systems,e classical macroscopic system. We firstly discuss this rotation symmetry on the function space . by using the algebra .. Since this symmetry is related to the three-dimensional rotation, it is called orbital angular momentum. Then, we discuss the Schr?dinger equation with central potential. As a ty
22#
發(fā)表于 2025-3-25 11:23:49 | 只看該作者
23#
發(fā)表于 2025-3-25 12:58:19 | 只看該作者
Bosonic System and Quantum Optics,ple of a boson. In the bosonic system, a unitary representation of Heisenberg group is given. In the photonic case, the coherent state of the representation is called coherent light and is physically implementable. The operation corresponding to the representation of . is called squeezing. When we a
24#
發(fā)表于 2025-3-25 17:56:32 | 只看該作者
Discretization of Bosonic System, do not necessarily have the equal possibility to physically realize. When we realize them artificially, it is natural that several specific transformations can be easily realized. Due to such a situation, it is important to address the symmetry of a specific subgroup as well as that of the Lie grou
25#
發(fā)表于 2025-3-25 23:14:44 | 只看該作者
26#
發(fā)表于 2025-3-26 01:36:26 | 只看該作者
27#
發(fā)表于 2025-3-26 04:42:32 | 只看該作者
28#
發(fā)表于 2025-3-26 08:28:08 | 只看該作者
29#
發(fā)表于 2025-3-26 13:19:13 | 只看該作者
30#
發(fā)表于 2025-3-26 19:27:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喀什市| 景东| 遵义市| 通州市| 台州市| 环江| 通化县| 吐鲁番市| 修武县| 舞阳县| 连云港市| 黔江区| 廊坊市| 水城县| 利津县| 屏东县| 文登市| 台东县| 永济市| 开封县| 康乐县| 亳州市| 德化县| 崇左市| 裕民县| 郴州市| 青河县| 高雄市| 丰县| 淅川县| 驻马店市| 南岸区| 工布江达县| 三河市| 白朗县| 财经| 揭阳市| 特克斯县| 霍城县| 正定县| 任丘市|