找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Forestall
31#
發(fā)表于 2025-3-26 23:47:24 | 只看該作者
The Extended ,-Characters,=?3 they had appeared with other names. There are connections with the representation theory of wreath products, with invariant theory and Schur functions. There are orthogonality relations and the Littlewood-Richardson coefficients appear in the decomposition of products of extended .-characters.
32#
發(fā)表于 2025-3-27 01:38:53 | 只看該作者
Fourier Analysis on Groups, Random Walks and Markov Chains,ich preserve diaonalizability of the corresponding group matrix. As an example of how the group matrix and group determinant can be used as tools, their application to random walks which become uniform after a finite number of steps is examined.
33#
發(fā)表于 2025-3-27 08:05:05 | 只看該作者
34#
發(fā)表于 2025-3-27 12:20:39 | 只看該作者
35#
發(fā)表于 2025-3-27 15:26:00 | 只看該作者
36#
發(fā)表于 2025-3-27 19:40:36 | 只看該作者
https://doi.org/10.1007/978-3-663-05735-2 that a fusion of the character table gives rise to a Hopf algebra is presented. There is also given a construction of a fusion of the character table of ..(.) by taking the class algebra of a loop constructed by an alternative multiplication on the elements on the elements of the group.
37#
發(fā)表于 2025-3-28 00:50:14 | 只看該作者
38#
發(fā)表于 2025-3-28 03:55:54 | 只看該作者
Further Group Matrices and Group Determinants,of the ring of representations and the Burnside ring of a group are described using supermatrices. A description of projective group matrices, corresponding to projective representations, is given. Work of L. E. Dickson on group matrices and group determinants over a finite field is also described.
39#
發(fā)表于 2025-3-28 09:33:23 | 只看該作者
40#
發(fā)表于 2025-3-28 12:00:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武山县| 吴江市| 郎溪县| 木兰县| 玉屏| 通渭县| 池州市| 赤峰市| 额尔古纳市| 铜梁县| 苗栗县| 宁晋县| 思南县| 贡山| 黄陵县| 嵩明县| 定州市| 乌鲁木齐县| 万年县| 法库县| 恭城| 东平县| 赣榆县| 资阳市| 定远县| 齐齐哈尔市| 丹凤县| 望奎县| 科技| 长阳| 太仆寺旗| 石城县| 龙岩市| 泰来县| 长丰县| 九龙城区| 科技| 南雄市| 志丹县| 萝北县| 瑞金市|