找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 能干
11#
發(fā)表于 2025-3-23 09:58:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:26 | 只看該作者
13#
發(fā)表于 2025-3-23 19:54:57 | 只看該作者
Hans Vorl?nder,Maik Herold,Steven Sch?llerd quality: smoothness, orthogonality, regularity, aspect ratio, adaptivity, etc. By the minimization of a combination of these functionals, a user can define a compromise grid with the desired properties. The chapter discusses a new variational approach for generating harmonic maps through the minim
14#
發(fā)表于 2025-3-24 00:51:16 | 只看該作者
Amer Al Homssi,Lisa Baumann Kreuzigero includes an expansion of the method by introducing general control metrics in the physical geometry. The control metrics provide efficient and straightforwardly defined conditions for various types of grid adaptation, particularly grid clustering according to given function values and/or gradients
15#
發(fā)表于 2025-3-24 05:32:57 | 只看該作者
16#
發(fā)表于 2025-3-24 09:32:44 | 只看該作者
17#
發(fā)表于 2025-3-24 12:20:56 | 只看該作者
Stretching Method, application of special nonuniform stretching coordinates in regions of large variation of the solution. The chapter ends with the description of a procedure to generate intermediate coordinate transformations which are suitable for smoothing both exponential and power layers.
18#
發(fā)表于 2025-3-24 18:00:15 | 只看該作者
19#
發(fā)表于 2025-3-24 21:23:16 | 只看該作者
20#
發(fā)表于 2025-3-25 01:04:15 | 只看該作者
Shane Byrne,John Bates,Jennifer M. B. Robsonetching coordinate transformations for singular layers described in Chap.?4. The chapter ends with a description of a procedure for generating triangular, tetrahedral, or prismatic grids through the method of transfinite interpolation.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 09:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
泗洪县| 榆树市| 古交市| 增城市| 定南县| 汾阳市| 淅川县| 屯昌县| 虹口区| 观塘区| 盐津县| 车致| 九寨沟县| 开阳县| 太湖县| 古交市| 海阳市| 铜鼓县| 丰宁| 平度市| 闵行区| 泾源县| 菏泽市| 新源县| 尉氏县| 靖边县| 洪洞县| 双鸭山市| 聂荣县| 拜泉县| 富民县| 芦溪县| 昌平区| 黔东| 荣昌县| 英超| 肇源县| 习水县| 舒兰市| 南宫市| 集安市|