找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 使作嘔
11#
發(fā)表于 2025-3-23 12:49:28 | 只看該作者
12#
發(fā)表于 2025-3-23 15:58:46 | 只看該作者
13#
發(fā)表于 2025-3-23 20:46:48 | 只看該作者
Grundzüge der Grenzschicht-Theorien?he zum Wert null direkt an der Wand. Dieser übergang erfolgt bei gro?en Reynolds-Zahlen in einer dünnen wandnahen Schicht, die nach L. Prandtl (1904) als . oder auch . bezeichnet wird. Wie noch gezeigt wird, ist die Dicke der Grenzschicht um so geringer, je gr??er die Reynolds-Zahl, d.h. je kleiner die Viskosit?t ist.
14#
發(fā)表于 2025-3-23 22:19:00 | 只看該作者
Temperaturgrenzschichten ohne Kopplung des Geschwindigkeitsfeldes an das Temperaturfeldgkeit λ eine Rolle spielt, im restlichen Gebiet jedoch vernachl?ssigt werden kann. Liegt neben dem Geschwindigkeitsfeld auch ein Temperaturfeld vor, kommt es im allgemeinen zu einer gegenseitigen Kopplung zwischen diesen beiden Feldern.
15#
發(fā)表于 2025-3-24 03:38:35 | 只看該作者
16#
發(fā)表于 2025-3-24 09:12:16 | 只看該作者
17#
發(fā)表于 2025-3-24 11:48:42 | 只看該作者
The Roots of Peacetime Propaganda,och kein geschlossenes System. Für das sog. Schlie?ungsproblem wird ein Turbulenz-Modell ben?tigt, das zus?tzliche Gleichungen bereitstellt, um die turbulente Schubspannung .. (und die turbulente W?rmestromdichte ..) mit der mittleren Bewegung (bzw. mit dem mittleren Temperaturfeld) in Verbindung zu bringen.
18#
發(fā)表于 2025-3-24 18:30:23 | 只看該作者
19#
發(fā)表于 2025-3-24 20:01:12 | 只看該作者
Turbulente Grenzschichten ohne Kopplung des Geschwindigkeitsfeldes an das Temperaturfeldoch kein geschlossenes System. Für das sog. Schlie?ungsproblem wird ein Turbulenz-Modell ben?tigt, das zus?tzliche Gleichungen bereitstellt, um die turbulente Schubspannung .. (und die turbulente W?rmestromdichte ..) mit der mittleren Bewegung (bzw. mit dem mittleren Temperaturfeld) in Verbindung zu bringen.
20#
發(fā)表于 2025-3-25 01:53:05 | 只看該作者
Feldgleichungen für die Str?mungen Newtonscher Fluidelekülabstand im Fluid. Bei Gasen ist die Annahme eines Kontinuums erfüllt, wenn die Knudsen-Zahl Kn = ../. sehr klein ist, wobei .. die mittlere freie Wegl?nge und . eine charakteristische L?nge des Str?mungsfeldes sind, siehe dazu S.A. Schaaf (1958).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 21:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
连城县| 双流县| 黄浦区| 吴桥县| 鄂伦春自治旗| 美姑县| 甘泉县| 通河县| 淅川县| 聊城市| 莲花县| 万年县| 南汇区| 沁水县| 邓州市| 澜沧| 六盘水市| 南阳市| 绥宁县| 伊宁市| 仙桃市| 旬阳县| 河间市| 辽宁省| 铜梁县| 中江县| 红原县| 瑞丽市| 泸溪县| 新余市| 缙云县| 柳州市| 山东省| 鄂尔多斯市| 河池市| 华安县| 永吉县| 仪征市| 深泽县| 屯门区| 三门峡市|