找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Autopsy
31#
發(fā)表于 2025-3-27 00:08:39 | 只看該作者
32#
發(fā)表于 2025-3-27 04:34:52 | 只看該作者
33#
發(fā)表于 2025-3-27 05:44:39 | 只看該作者
34#
發(fā)表于 2025-3-27 11:25:53 | 只看該作者
35#
發(fā)表于 2025-3-27 17:35:03 | 只看該作者
Performer: A Resource Demand Forecasting Method for Data Centers,nd to schedule tasks. To cope with the huge number of workloads in a data center, workloads are usually clustered first and then prediction is conducted for each cluster. However, training different models for different clusters separately reduces the overall utilization of the data in the data cent
36#
發(fā)表于 2025-3-27 18:20:35 | 只看該作者
,Optimizing Video QoS for?eMBMS Users in?the?Internet of?Vehicles,aced growth of the automotive industry and communications technologies. At the same time, with the rapid development of in-vehicle video, the development of broadcasting business has been driven. The 3GPP standardization group has suggested the evolved Multimedia Broadcast Multicast Service (eMBMS),
37#
發(fā)表于 2025-3-28 01:27:04 | 只看該作者
,Huffman Tree Based Multi-resolution Temporal Convolution Network for?Electricity Time Series Predicand. However, most existing methods cannot capture the complicated structure of electricity time series, and make personalized suggestions on electricity purchasing scheme. The main challenge lies in the periodicity and instability of electricity time series. To capture the global and local features
38#
發(fā)表于 2025-3-28 03:11:16 | 只看該作者
Deep Learning-Based Autonomous Cow Detection for Smart Livestock Farming,ought the autonomous robotic system to the smart farming that enhance productivity and efficiency. Therefore, a YOLOv4-SAM was proposed to achieve high detection precision of cow body parts in long-term complex scenes. The proposed YOLOv4-SAM consists of two components: YOLOv4 is for multi-scale fea
39#
發(fā)表于 2025-3-28 08:36:43 | 只看該作者
Bedeutung der Lungenfunktionsdiagnostik,nhance the texture features. The results of the experiment show that the average accuracy, the average specificity and the average sensitivity of the improved algorithm increase by 9.2%, 6.4% and 6.5% respectively. The improved algorithm is effective in glaucoma fundus image classification.
40#
發(fā)表于 2025-3-28 13:40:47 | 只看該作者
,Decision Tree Fusion and?Improved Fundus Image Classification Algorithm,nhance the texture features. The results of the experiment show that the average accuracy, the average specificity and the average sensitivity of the improved algorithm increase by 9.2%, 6.4% and 6.5% respectively. The improved algorithm is effective in glaucoma fundus image classification.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蕉岭县| 蒙阴县| 福建省| 隆林| 清涧县| 双柏县| 萨迦县| 博白县| 西乌珠穆沁旗| 屏南县| 积石山| 工布江达县| 安泽县| 金华市| 伊宁市| 镇沅| 遂昌县| 册亨县| 绍兴市| 海兴县| 比如县| 封丘县| 抚远县| 海南省| 白朗县| 福贡县| 洮南市| 达孜县| 南木林县| 崇文区| 临西县| 剑河县| 濮阳县| 锡林郭勒盟| 光山县| 隆子县| 青河县| 体育| 临武县| 蓬溪县| 新津县|